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Abstract

Design patterns describe good solutions to common
and recurring problems in program design. The solu-
tions are design motifs which software engineers imi-
tate and introduce in the architecture of their program.
It is important to identify the design motifs used in a
program architecture to understand solved design prob-
lems and to make informed changes to the program.
The identification of micro-architectures similar to de-
sign motifs is difficult because of the large search space,
i.e., the many possible combinations of classes. We
propose an experimental study of classes playing roles
in design motifs using metrics and a machine learning
algorithm to fingerprint design motifs roles. Finger-
prints are sets of metric values characterising classes
playing a given role. We devise fingerprints experimen-
tally using a repository of micro-architectures similar
to design motifs. We show that fingerprints help in re-
ducing the search space of micro-architectures similar
to design motifs efficiently using the Composite design
motif and the JHotDraw framework.

1 Motivations

Design patterns [9] collect experts’ knowledge in
object-oriented software design. They name and de-
scribe (1) problems recurring when designing software,
(2) good solutions to these problems, and (3) the impli-
cations of these solutions on the design. The solutions
offered by design patterns are described by means of
design motifs: Prototypical micro-architectures from
which software developers draw inspiration to design
their programs. Design motifs declare actors and the
relationships among actors, as sketched on Figure 1.
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A program architecture may contain several micro-
architectures similar to design motifs when software
developers used design patterns. Figure 2 sketches a
meta-model to describe micro-architectures similar to
design motifs in object-oriented programs.

Design Motif Roles Relationship
declares contains

targets

Figure 1. Design motifs meta-model

Micro-Architecture Roles Class

Figure 2. Micro-architectures meta-model

It is desirable to know the design motifs used by soft-
ware developers when reverse-engineering a program
architecture. Indeed, knowledge about applied design
motifs leads to a better understanding of the design
problems solved by software developers when design-
ing the program architecture. Understanding of the
design problems is a necessary step towards informed
changes of the program and of its architecture.

The acquisition of knowledge on design motifs used
by software developers in a program architecture re-
quires finding all micro-architectures similar to design
motifs in the architecture, i.e., finding all classes (or
interfaces) which structures and organisations are sim-
ilar to design motifs. Thus, the identification of de-
sign motifs is a problem of finding patterns in complex
graphs and is difficult—high algorithmic complexity,
time- and space-consuming, results with low precision
and low recall—because of the many possible combina-
tions of classes and of the size of programs [2].
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A possibility to reduce the difficulty of design motifs
identification is to conceive and to apply heuristics that
reduce the search space, i.e., that reduce the number
of potential combinations of classes. We are exploring
this possibility by conducting an experimental study of
micro-architectures similar to design motifs. We seek
to find quantitative signatures common to classes play-
ing given roles in design motifs to ease their identifica-
tion in programs architectures and thus to reduce the
complexity of design motifs identification algorithms.
Quantitative signatures for design motifs are similar
to fingerprints for individuals, they allow efficient and
automated identification.

As interesting side effects to our experimental study,
we can use quantitative signatures to assess the qual-
ity characteristics of suggested design motifs quantita-
tively. Therefore, we can attempt to predict the quality
of programs architectures when using design patterns.
Also, we can assess whether or not classes which struc-
ture and organisation respect a design motif—a good
solution to a recurring design problem—break sound
principles of software engineering, such as low coupling
and high cohesion.

In this paper, we describe a first experimental set-
ting and preliminary results from our experimental
study of micro-architectures similar to design motifs.
We introduce roles fingerprints inferred using a propo-
sitional rule learner algorithm from a set of metric val-
ues computed on classes playing these roles in design
motifs. Roles fingerprints are quantitative signatures
of design motifs roles that can be used to reduce effi-
ciently the number of classes playing potentially a role
in a design motif. Also, we show experimentally using
roles fingerprints that the use of design motifs leads to
good designs generally, i.e., designs respecting software
engineering principles.

Section 2 summarises related work and concludes on
the limitations of previous approaches. Section 3 intro-
duces the theoretical background of our experimental
study of micro-architectures similar to design motifs.
Section 4 introduces a first experimental setting to in-
fer roles fingerprints for design motifs roles. Section
5 details the results of our study and discuss the fin-
gerprints from the qualitative and quantitative point
of views. Section 6 presents an example of the use of
fingerprints to ease the identification of the Composite
design motif. Finally, Section 7 concludes on this first
experimental study and presents future work.

2 Related Work

The work presented in this paper overlaps two re-
search fields, namely design motifs identification and

the study of the impact of design motifs on software
quality. This section presents related work in both
fields briefly.

On the one hand, several work tackled the prob-
lem of design motifs identification. Most of the ap-
proaches use structural matching between groups of
classes—micro-architectures—and design motifs. Dif-
ferent techniques are used: Rule inference [18, 27],
queries [7, 16], fuzzy reasoning nets [14], constraint pro-
gramming [11, 22]. For example, Wuyts [27] developed
the SOUL environment in which design motifs are de-
scribed as Prolog predicates and programs entities as
facts (classes, methods, fields. . . ). Then, a Prolog in-
ference algorithm unifies predicates and facts to iden-
tify classes playing roles in design motifs. The main
problem of structural approaches is the inherent com-
binatorial complexity of identifying subsets of classes
matching design motif descriptions, which corresponds
to a problem of subgraph isomorphism [8]. Antoniol
et al. proposed an alternative approach to reduce
the search space of micro-architectures [2]. They de-
signed a multi-stage filtering process to identify micro-
architectures identical to design motifs using metrics.
For each class of a program, they compute some met-
rics (for example, numbers of inheritance, of associa-
tion, and of aggregation relationships) and they com-
pare the metric values with expected values for a de-
sign motif. The expected values are derived from
design pattern descriptions. The main limitation of
their work is the assumption that the implementa-
tion (micro-architectures) accurately reflects the the-
ory (design motifs), which is often not the case. More-
over, the theoretical quantification of roles, when pos-
sible, does not reduce the search space significantly.

On the other hand, some work studied the impact on
quality of design patterns. Wendorff [25] reported on a
large commercial software project in which design pat-
terns had been applied too eagerly, resulting in mainte-
nance problems. Hahsler [12] proposed a study of over
1,000 open source projects and provided evidence that
the use of design patterns improve both communication
among developers and source code documentation. Fi-
nally, in a work similar to ours, Masuda et al. [21] per-
formed a quantitative evaluation and an analysis of the
application of design motifs. They built two sets of pro-
grams: One set containing two programs implemented
without design motifs; One set containing the two same
programs, rewritten to use design motifs. They com-
puted Chidamber and Kemerer’s metrics [6] on the two
sets of programs and compared the results. They con-
cluded that the use of design motifs deteriorates certain
metric values and suggested that Chidamber and Ke-
merer’s metrics might not be appropriate to assess the
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quality of programs implemented with design motifs.
However, their experimental study bears on two sets of
two programs only, which are rather small sets of data
to be significant.

The work that we propose in this paper builds on the
ideas from Antoniol et al. and Masuda et al. and cir-
cumvents the problem of defining the expected metric
values, the values of reference, by mining these values
from a repository of micro-architectures directly. Also,
our work aims at reducing the search space by con-
sidering a large set of structural metrics. Finally, we
compare the metric values determined experimentally
to well-accepted software engineering principles, such
as low coupling or high cohesion.

3 Fingerprinting Design Motifs Roles

In a not-so-distant past, individuals could be identi-
fied by external attributes only, such as height, weight,
colour of hair, of eyes, of skin; for example using
Alphonse Bertillion’s system of bodily measures [17].
Thus, it was difficult to identify with certainty an in-
dividual uniquely, almost impossible without eyewit-
nesses. This situation changed when Sir Edward Henry
devised and introduced in 1896 his classification sys-
tem to identify criminals in Bengal using their finger-
prints [19]. The use of fingerprints, imprints made by
the pattern of ridges on the pad of a human finger,
allows to distinguish among individuals: To our best
knowledge, no two individuals have ever been found to
have identical fingerprints.

Likewise, we seek to identify classes playing roles in
design motifs using their external attributes. The most
consensual attributes for classes in object-oriented pro-
gramming languages are:

• Size, e.g., number of methods, of fields.

• Filiation, e.g., number of parents, number of chil-
dren of a class in the inheritance tree.

• Cohesion, e.g., degree to which methods and at-
tributes of a class belong together.

• Coupling, e.g., strength of the association created
by a link from one class to another.

However, unlike individuals, two or more classes
may have identical values for a given set of external
attributes. Indeed, two or more classes may play a
same role in different uses of a design motif and a same
class may play two or more roles in one or more de-
sign motifs. Thus, external attributes cannot be used
to distinguish uniquely among classes paying roles in
design motifs.

Yet, external attributes can be used to reduce the
search space of micro-architectures similar to design
motifs. We can use external attributes to eliminate
true negatives from the search space efficiently, i.e.,
classes that obviously do not play a role in a design
motif. Moreover, no thorough empirical studies have
so far validated the impossibility to identify classes
uniquely with their external attributes, or attempted
to find quantifiable commonalities among classes play-
ing a given role in a design motif experimentally.

Therefore, we study the use of external attributes
of classes to quantify design motifs roles: We devise a
kind of fingerprints for design motifs roles using exter-
nal attributes of classes. We group these fingerprints
in rules to identify classes playing a given role. For ex-
ample, a rule for the role of Singleton in the Singleton
design motif could be

Rule for "Singleton" role:

Filiation: Number of parents low,

number of children low.

because a class playing the role of Singleton is high in
the inheritance tree normally and has no (or a few)
subclass usually. A rule for the role of Observer in the
Observer design motif could be

Rule for "Observer" role:

Coupling: Coupling with other classes low.

because the purpose of the Observer design motif is
to reduce the coupling between the classes playing the
roles of Observer and the rest of the program.

4 Building Roles Fingerprints

4.1 Overview

Figure 3 presents an overview of the process of fin-
gerprinting design motifs roles. First, we build a repos-
itory of classes forming micro-architectures similar to
design motifs in different programs. We identified the
roles played by these classes in design motifs manually.
Then, we parse the programs in which we found micro-
architectures similar to design motifs to obtain models
of these programs. We compute metrics on these mod-
els of programs to associate a set of values for the exter-
nal attributes with each class in the repository. We feed
a propositional rule learner algorithm with the sets of
metric values. The rule learner returns a set of rules
characterising design motifs roles with the metric val-
ues of the classes playing these roles. We cross-validate
the rules using the leave-one-out method. Finally, we
interpret the rules obtained (or the lack thereof) for
roles in design motifs. The following subsections detail
each step of the process.
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Figure 3. Process of fingerprinting design motifs roles

4.2 Repository Creation

We need a repository of classes forming micro-
architectures similar to design motifs to analyse these
classes quantitatively. We investigate several programs
manually to identify micro-architectures similar to de-
sign motifs and to build a repository of these micro-
architectures, the DPL1. We create this repository us-
ing different sources:

• Studies in the literature, such as the original study
from James Bieman et al. [3], which record classes
playing roles in design motifs from several different
C++, Java, and Smalltalk programs.

• Our tool suite for the identification of design mo-
tifs, Ptidej2 [1, 10], which revolves around a con-
straint solver to identify micro-architectures simi-
lar to design motifs in programs.

• One assignment in a graduate course, during
which students performed analyses of two Java
programs, QuickUML and Lexi.

The repository of micro-architectures similar to de-
sign motifs surveys:

• For each program, design motifs for which we
found similar micro-architectures.

• For each design motif, similar micro-architectures
that we found in the program.

• For each micro-architectures, roles played by their
classes in the corresponding design motif.

We validate all the micro-architectures manually be-
fore their inclusion in the repository, however we do not
claim that we identified all micro-architectures similar
to design motifs in a given program.

So far, the DPL contains data from 6 programs,
for a total of 7,068 classes and 93 micro-architectures
representing 15 different design motifs. Table 1 sum-
marises the data in the DPL. The two first rows give
the names and number of classes (and interfaces) of the
surveyed programs. The following rows indicates, for a

1DPL is a Design Pattern Library.
2Ptidej stands for Pattern Trace Identification, Detection,

and Enhancement in Java.

<program type="LANGUAGE">

<name>NAME</name>

<designMotif name="NAME">

<microArchitectures>

<microArchitecture n="NUMBER">

<roles>

<ROLES1>

<ROLE1>

<class>

NAME

</class>

</ROLE1>

...

</ROLES1>

...

</roles>

</microArchitecture>

...

</microArchitectures>

</designMotif>

...

</program>

...

Figure 4. Structure of the repository

given design pattern (per row), the number of micro-
architectures found similar to its design motif in each
program (per column). The table summarises also the
number of roles defined by a design motif and the num-
ber of classes playing a role in a design motif for all the
programs (two last columns). The number of classes
playing roles in design motifs shows that only a frac-
tion of all the classes of the programs plays a role in a
design motif. Moreover, some classes are counted more
than once because they play different roles in different
design motifs.

We record this data in a XML file, which allows us
to traverse the data to compute metrics and various
statistics automatically. Figure 4 shows the general
structure of the XML file: A program is written in
a language and has a (unique) name; Each design
motif has a (unique) name also; A micro-architecture
possesses a unique number and associates each possi-
ble role in the design motif, role1, role2. . . , roleN,
with the classes names (if any) playing this role.
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JHotDraw JRefactory JUnit Lexi NetBeans QuickUML
Total

Number
of roles

[9]

Number of
classes

playing a
role per

design motif

v5.1 v2.6.24 v3.7 v0.0.1α v1.0.x 2001
Number of classes 173 575 157 127 5812 224 7,068

Design motifs5 Number of micro-architectures similar to design motifs per program
Abstract Factory 12 1 13 5 217

Adapter 1 17 8 26 4 230
Builder 2 1 1 4 4 24

Command 1 1 1 3 5 67
Composite 1 1 2 4 4 107
Decorator 1 1 2 4 64

Factory Method 3 1 4 4 67
Iterator 1 5 6 5 30
Observer 2 3 2 1 8 4 93
Prototype 2 2 3 32
Singleton 2 2 2 2 1 9 1 9

State 2 2 4 3 32
Strategy 4 4 3 36

Template Method 2 2 2 36
Visitor 2 2 4 138

Total 93 55 1182

Table 1. Overview of the data set 6: Programs, design motifs, micro-architectures, and roles

4.3 Metric Extraction

We parse the programs surveyed in the DPL and
calculate metrics on their classes automatically. Pars-
ing and calculation are performed in a three-step pro-
cess: First, we build a model of a program using the
PADL3 meta-model and its parsers; Second, we com-
pute metrics using POM4, an extensible framework for
metric calculation based on PADL; Third, we store the
results of the metric calculation, names and values, in
the DPL, by adding specific attributes and nodes to
the XML tree representation.

We use metrics from the literature to associate val-
ues with external attributes of classes playing a role in
a design motif. Table 2 presents the metrics computed
on classes related to the external attributes that we
consider: Size, filiation, cohesion, and coupling. For
size, we use the metrics by Lorenz and Kidd on new,
inherited, and overridden methods and on the total
number of methods [20], and the count of methods
weighted with their numbers of method invocations
by Chidamber and Kemerer [6]. We do not use met-
rics related to fields because no design motif role is
characterised by fields specifically: Only the Flyweight,
Memento, Observer, and Singleton design motifs (5 out
of 23) expose the internal structures of some roles to
exemplify typical implementation choices. Moreover,
fields should always be private to their classes with re-
spect to the principle of encapsulation. For filiation,
we use the depth in the inheritance tree and the num-
ber of children by Chidamber and Kemerer [6] and the
number of hierarchical levels below a class, class-to-leaf

3PADL is the acronym of Pattern and Abstract-level Descrip-
tion Language.

4Metric extraction is based on Primitives Operators Metrics.

depth, by Tegarden et al. [24]. For cohesion, we use
the metric ‘C’ measuring the connectivity of a class
with the rest of a program by Hitz and Montazeri [13]
and the fifth metric on lack of cohesion in methods
by Briand et al. [5]. Finally, for coupling, we use two
metrics on class-method import and export coupling by
Briand et al. [4] and the metric on coupling between
objects by Chidamber and Kemerer [6].

4.4 Rule Learning and Validation

The DPL contains a wealth of data to analyse. We
use a machine learning algorithm to find commonal-
ities among classes playing a same role in a design
motif. We supply the data to a propositional rule
learner algorithm, JRip, implemented in Weka, an
open-source program collecting machine learning algo-
rithms for data mining tasks [26].

We do not provide JRip with all the data in the
DPL, this would lead to uninteresting results because
of the disparities among roles, classes, and metric val-
ues. We provide JRip with subsets of the data related
to each role. A subset σ of the data related to a role
contains the metric values for the n classes playing the
role in all the micro-architectures similar to its design
motif. We add to this subset σ the metric values of
3× n classes not playing the role, chosen randomly in
the rest of the data. We make sure the classes chosen
randomly have the expected structure for the role, i.e.,
whether the role is defined to be played by a class or by
an abstract class [9], to increase their likeliness with the

5Design motifs for which we did not identify similar micro-
architectures are: Bridge, Chain of Responsibility, Façade, Fly-
weight, Interpreter, Mediator, Memento, Proxy.

6For clarity, an empty cell has value zero.
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Acronyms Descriptions References

Size

NM Number of methods [20]
NMA Number of new methods [20]
NMI Number of inherited methods [20]
NMO Number of overridden methods [20]
WMC Weighted methods count [6]

Filiation
CLD Class-to-leaf depth [24]
DIT Depth in inheritance tree [6]
NOC Number of children [6]

Cohesion
C Connectivity ‘C’ [13]

LCOM5 Lack of cohesion in methods 5 [5]

Coupling
ACMIC Ancestors class-method import [4]
CBO Coupling between object [6]

DCMEC Descendants class-method export [4]

Table 2. External attributes for classes and corresponding metrics

classes playing the role. The rule learner infers rules
related to each role from the subsets σ. We validate
the rules using the leave-one-out method with each set
of metric values in the subsets σ [23].

4.5 Interpretation

The rule learner infers rules that express the exper-
imental relationships among metric values, on the one
hand, and roles in design motifs, on the other hand.
Typically, a rule inferred by the rule learner for a role
ROLE has the form

Rule for "ROLE" role:

- Fingerprint 1, confidence 1,

- Fingerprint 2, confidence 2,

- ...

- Fingerprint N, confidence N.

where

Fingerprint 1 : {metric1 ∈ V11, . . . , metricm ∈ Vm1}
...

Fingerprint N : {metric1 ∈ V1n, . . . , metricm ∈ Vmn}

and the values of a metric metrici computed on classes
playing the role ROLE belong to a set Vij ⊂ N. The
degree of confidence confidence K is the proportion of
classes concerned by a fingerprint in a subset σ, which
we use to compute error and recall ratios.

We collect all the rules inferred from the rule learner
and process the rules with the following criteria to re-
move uncharacteristic rules:

• We remove rules with a recall ratio less than 75%.

• We remove rules inferred from small subsets σ, i.e.,
when not enough classes play a given role.

Then, we interpret the remaining rules in two ways:
Qualitatively, we explain rules with respect to their cor-
responding roles; Quantitatively, we assess the quality

of classes playing roles in design motifs. Practically,
we show that fingerprints reduce the search space for
micro-architectures similar to design motifs efficiently.

5 Interpretation of Roles Fingerprints

We decompose the data in the DPL in 56 subsets
σ and infer as many rules with the rule learner, which
decompose in 78 fingerprints. The two first steps in
the analysis process are quantitative and aim at elim-
inating roles that do not have a sufficient number of
examples for mining fingerprints and that do not have
a high enough recall ratio. In the first step, we remove
20 over the 56 rules from all the rules inferred by the
rule learner. The removed rules corresponds to:

• Design motifs roles with few corresponding micro-
architectures and with a unique (or a few) occur-
rence in a micro-architecture. Some examples are
the roles of Decorator in the Decorator design motif
and of Prototype in Prototype.

• Design motifs roles played by “ghost” classes in
many cases, i.e., classes known only from import
references, such classes in standard libraries. Some
examples are the classes playing the roles of Com-
mand in the Command design motif and of Builder
in Builder.

In the second step, we select 20 rules with a recall
ratio greater than 75%, shown in Table 3, from the
36 remaining rules. All these roles have an error rate
less than 10% (less than 5% for 16). Most of the rules
removed because of their low recall ratio are known to
be non-key roles in design motifs and thus do not have
a particular fingerprint theoretically. For example, any
class may play the role of Client in the Composite design
motif. Similarly, any class may play the role of Invoker
in the Command design motif. (Some researchers argue
that Client, Invoker. . . are not “real” roles and should
not appear in most design motifs.)
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Design motifs Roles Error (%) Recall (%)
Iterator Client 0,00 100,00
Observer Subject 0,00 100,00
Observer Observer 2,38 100,00

Template Method Concrete Class 0,00 97,06
Prototype Concrete Prototype 0,00 96,30
Decorator Concrete Component 4,17 89,58

Visitor Concrete Visitor 0,00 88,89
Strategy Context 3,70 88,89
Visitor Concrete Element 2,04 88,78

Singleton Singleton 8,33 87,50
Factory Method Concrete Creator 4,30 87,10
Factory Method Concrete Product 3,45 86,21

Adapter Target 4,00 84,00
Composite Leaf 6,47 82,09
Decorator Concrete Decorator 0,00 80,00
Iterator Iterator 0,00 80,00

Command Receiver 6,67 80,00
State Concrete State 6,67 80,00

Strategy Concrete Strategy 2,38 78,57
Command Concrete Command 3,23 77,42

Table 3. Roles with inferred rules with recall ratio greater than 75%

Rule "Target"

- WMC <= 2, 24/25.

Figure 5. Rules inferred for the role of Target
in the Adapter design motif

5.1 Qualitative Study

We notice that in many cases we obtain a unique
fingerprint for a given role in a design motif. Classes
playing a same role have similar structures and organ-
isations generally. For example, all the classes playing
the role of Target in the Adapter design motif have a
low complexity, represented by low values of WMC,
as shown in Figure 5 (the degree of confidence is less
than 1 because this fingerprint misclassifies one class,
its error rate is 4%, as shown in Table 3). Such a low
complexity is actually expected because of the archi-
tecture and of the behaviour suggested by the Adapter
design motif. Likewise, many other fingerprints con-
firm claims from and beliefs on design motifs. For
examples, classes playing the role of Observer in the
Observer design motif have a low coupling, i.e., a low
CBO. Classes playing the roles of Singleton in the Sin-
gleton design motif have low coupling and belong to
the upper part of the inheritance tree generally.

In few cases, we obtain more that one fingerprint for
a role. An example is the role of Concrete Visitor in the
Visitor design motif. On the one hand, the most fre-
quent fingerprint is characteristic of classes with a low
coupling (low CBO) and a large number of methods
(high NM), as expected from the problem dealt with
by the Visitor design pattern. On the other hand, the

second fingerprint states that the number of inherited
methods is low (low NMI) for some classes playing the
role of Concrete Visitor. When exploring the micro-
architectures similar to the Visitor design motif in our
repository, we notice that in JRefactory some classes
play the roles of both Concrete Visitor and Visitor, which
then limits the number of inherited methods. This sec-
ond fingerprint is particular to the program and thus
unveils design choices specific to the program or to a
coding style.

The fingerprints we have discovered confirm com-
mon claims from and beliefs on design motifs, hence
we are surprised that no existing design motifs iden-
tification tools use such claims and beliefs. Moreover,
when heuristics are used, as in the work by Antoniol et
al. [2], the knowledge is abstracted from theory only
(design pattern descriptions) and is not validated on
actual micro-architectures.

5.2 Quantitative Study

From the point of view of the design quality, no fin-
gerprint of the 20 roles which rules have a recall ra-
tio greater than 75% have a high coupling or a low
cohesion. Classes playing these roles comply with
sound principles of software engineering: Low cou-
pling and high cohesion. Generally, Figure 6 shows
that the majority of classes playing roles in design
motifs—including removed roles—exhibit low coupling
(low CBO), high cohesion (low LCOM5), and low com-
plexity (low WMC). Thus, we confirm experimentally
that the use of design motifs lead to programs archi-
tectures with good quality characteristics. Figure 6
shows also that some metrics are irrelevant to finger-
print design motifs roles: No fingerprint uses the NOC,
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Figure 6. Summary of the metric values for all the rules

C, ACMIC, and DCMEC metrics. (The NMA, NMI,
and NMO metrics do not appear, because, to our best
knowledge, no software engineering principles involve
these metrics.)

6 Application of Roles Fingerprints

As stated in Section 3, fingerprints inferred by the
rule learner from metric values computed on classes
playing roles in design motifs must not be used to iden-
tify design motifs. Indeed, two or more classes may
have theoretically the same fingerprints as do two or
more roles. The use of fingerprints to identify roles
would lead to many false positives. For example, the
rule shown in Figure 5 for the Target role corresponds
to many classes in a program.

However, fingerprints help in reducing the search
space for micro-architectures similar to design motifs
efficiently. When searching for classes which structures
and organisations are similar to a design motif, the use
of fingerprints allows to remove from the search space
all the classes which fingerprints do not match expected
fingerprints for the design motif roles. For example,
when searching for micro-architectures similar to the
Adapter design motif and according to the rule in Fig-
ure 5, we can remove from the set of candidate classes
for the role of Target any class with a high complexity,
i.e., with a medium or high value for its WMC.

We integrate fingerprints with our constraint-based
tool suite for design motifs identification and program
understanding, Ptidej. In previous work [1, 10], we
described design motifs as constraint systems: Each
role is represented as a variable and relationships
among roles are represented as constraints among vari-
ables. Variables had identical domains: All the classes
in a program in which to identify design motifs. For
example, the identification of micro-architectures sim-
ilar to the Composite design motif, shown in Figure 7,
in JHotDraw translates to the constraint system

Variables:

client

component

composite

leaf

Constraints:

association(client, component)

inheritance(component, composite)

inheritance(component, leaf)

composition(composite, component)

where the four variables client, component,
composite, and leaf have identical domains, which
contains all the 155 classes (and interfaces) composing
JHotDraw, and the four constraints represent the
association, inheritance, and composition relationships
suggested by the Composite design motif.
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With fingerprints, we can reduce the search space in
two ways:

• We can assign a different domain to each variable
containing only those classes which fingerprints
match the expected fingerprints for the role.

• We can add unary constraints on each variable to
match the fingerprints of the classes in its domain
with the fingerprint of the corresponding role.

These two ways achieve a same result: They remove
from the domain of a variable all the classes which fin-
gerprints do not match the expected role fingerprint,
thus reducing the search space by reducing the domains
of the variables.

Among the roles of Client, Component, Composite,
and Leaf, the rule learner infers a rule with a recall ratio
greater than 75% for the role of Leaf only, as shown in
Table 3. The rule and the associated fingerprints for
the role of Leaf are

Rule for "Leaf" role:

- NMI >= 26 and DIT >= 5, 23/67

- NMI >= 25 and NMO <= 2, 45/67

- DIT >= 3 and NM <= 12, 9/67

We compute the metrics in Table 2 on the classes of
JHotDraw and apply the fingerprints successively to
assess the search space reduction. Table 4 shows the
percentages of search space reductions with each differ-
ent fingerprints. The reduction of the search space lies
between 69.00% and 89.15% for classes playing possi-
bly the role of Leaf in a micro-architecture similar to
the Composite design motif. It takes less than 2 seconds
to compute all the metric values on an AMD Athlon
64bits processor at 2GHz (we need to compute these
metrics only once for any given program) while com-
puting all possible micro-architectures similar to the
design motif in the JHotDraw framework takes more
than 4 hours using the reference implementation of
the PaLM explanation-based constraint solver [11, 15].
Computing all the micro-architectures with a reduced
search space for the role of Leaf takes between 2 and
3 hours only. Therefore, fingerprints are invaluable to
ease design motifs identification by reducing the search
space efficiently.

7 Conclusion and Future Work

We presented the first results of an experimental
study of micro-architectures similar to design motifs.
We built a repository of such micro-architectures us-
ing different sources. We computed several metrics on

Component

operation()

Leaf

operation()

Composite

add(Component)
remove (Component )
getComponent (int )
operation()

 component

for each component
component.operation ()

1.. n
Client

Figure 7. The Composite design motif [9]

Numbers of Reductions
Fingerprints classes matching of the search

a fingerprint space (%)
NMI >= 26 and DIT >= 5 20 69.00
NMI >= 25 and NMO <= 2 7 89.15
DIT >= 3 and NM <= 12 10 84.50

Table 4. Space search reduction with Leaf role
fingerprints in JHotDraw

classes playing roles in design motifs. We applied a
rule learner (machine learning algorithm) and found
that classes playing certain roles in design motifs share
same fingerprints (quantitative signatures). We used
these fingerprints to improve design motif identification
algorithms. Indeed, the identification process now de-
composes in two steps: (1) To identify candidate classes
for key-roles in design motifs by eliminating classes that
do not match expected fingerprints and (2) to iden-
tify candidate classes for the remaining roles starting
from key-role candidates and using structural match-
ing. This process reduces the search space efficiently,
in particular in the case of large programs by remov-
ing many classes that obviously do not play a role in a
design motif.

The secondary objective of our experimental study
was to assess whether programs implemented using de-
sign motifs conform with software engineering princi-
ples generally. We did not find transgression of well-
accepted principles, such as low coupling, high cohe-
sion, and low complexity. However, our analysis con-
sidered general principles only. We plan to conduct a
thorough analysis of design motifs and of the impact
of their use on quality by conducting an experimen-
tal evaluation of the claims of each design pattern re-
garding software quality characteristics (extensibility,
understandability. . . ) independently.

Also, we are preparing a replication of our study
with a larger repository of micro-architectures simi-
lar to design motifs. In this replication study, we
will improve the experimental setting. One important

9



change concerns the composition of the learning sam-
ples for each design motif role: The number of counter-
examples and there nature shall be chosen as close as
possible to real situations of identifications to produce
fingerprints with greater accuracy. Also, other object-
oriented metrics shall be investigated.
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Instantiating and detecting design patterns: Putting bits and
pieces together. In proceedings of the 16th conference on
Automated Software Engineering, pages 166–173. IEEE Com-
puter Society Press, November 2001.

[2] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern

recovery in object-oriented software. In proceedings of the 6th

International Workshop on Program Comprehension, pages
153–160. IEEE Computer Society Press, June 1998.

[3] J. Bieman, G. Straw, H. Wang, P. Willard, and R. T. Alexan-
der. Design patterns and change proneness: An examination of
five evolving systems. In proceedings of the 9th international
Software Metrics Symposium, pages 40–49. IEEE Computer
Society Press, September 2003.

[4] L. Briand, P. Devanbu, and W. Melo. An investigation into

coupling measures for C++. In proceedings of the 19th Inter-
national Conference on Software Engineering, pages 412–421.
ACM Press, May 1997.

[5] L. C. Briand, J. W. Daly, and J. K. Wüst. A unified frame-
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