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Abstract

We present a realizability interpretation for classical analysis—an association
of a term to every proof so that the terms assigned to existential formulas repre-
sent witnesses to the truth of that formula. For classical prooid.o$entences
Vz3IyA(z,y), this provides a recursive type 1 function which computes the func-
tion given byf(x) = y iff y is the least number such thatz, y).

1 Introduction

Although both classical and intuitionistic arithmetic prove the sdiiresentences,
proofs in the intuitionistic version generally provide more information. The Curry-
Howard isomorphism associates them with realizingrms, which associate numeri-

cal witnesses to existential quantifiers and appropriate functionals to strings of quanti-
fiers.

[Avigad, 2000] demonstrates a method of extending this realization to classical
arithmetic to find numerical witnesses3h sentences and type 1 functions witnessing
I, sentences. This method of witness extraction was derived from the composition of
an embedding of classical logic in intuitionistic logic, the Friedman-Dragalin transla-
tion (first described in [Friedman, 1978] and [Dragalin, 1980]), and the Curry-Howard
isomorphism.

In this paper we extend this method to second order classical arithmetic. As with
Avigad’s version, the actual embedding of classical logic in intuitionistic logic is un-
usually simple; in particular, unlike the double-negation translation, an atomic formula
¢ in classical logic is unchanged in the intuitionistic embedding. This leads to a differ-
ent type of equivalence between the theories: if we can ppameclassical logic then
¢~ can be proven in intuitionistic logic. By contrast, under the embedding used here,
we will be able to prove instead thétg)? - L.

The embedding used here is simplified by not allowing implication or universal
quantifiers in the classical language, instead building them in the usual way from nega-
tion, disjunction, and existential quantifiers. This means that, for exaripie,is
embedded is»3z—¢: no universal quantifiers appear in the range of the embedding.



In order to find\ terms corresponding to intuitionistic proofs, thBRO? — mr
realizability given in [Troelstra, 1973] will be used, based on Kreisel's modified real-
izability presented in [Kreisel, 1959] and [Kreisel, 1962]. The systéRO? encodes
functionals as numbers and the modified realizability associates a type to each formula
of HA? and a particular term of that type to each proof of the formula.

We will show that each proof of &; formula3dzA(z) in HA? can be converted
into a termt of HRO? such that analysis proves thais defined and satisfies for
every value of any parameters appearingtin

2 Preliminaries

A Tait style calculus based on the one in [Schwichtenberg, 1977] will be usdei4dr
The primary difference is that is taken as a connective, rather than a shorthand for the
negation-normal form. Atomic formulae will be either of the fosm= ¢ or Xt,...t,
(wheres, t, t,...,t, are terms and is ann-ary second order variable). The connec-
tives will be—, v, 3, and32. Other connectives can be defined in the usual way.

The rules of this system will be:

1. Propositional Rules

(@) I, A, = A for any atomicA
(b) FromT', =¢ andI’, —) concludel’, =(¢ V )
(c) FromI', ¢ concludel’, ¢ Vv ¢ andl’, ¢ V ¢
(d) FromI', ¢ andI', —¢ concludel’
2. Quantifier rules
(&) FromI',—¢(y) concludel’, ~3x¢(x) if y does not occur free in any for-

mula of "

(b) FromT', —¢(Y) concludel’, -3 X ¢(X) if Y does not occur free in any
formula of "

(c) FromI', ¢(t) concludel’, 3z (z)
(d) FromT', ¢(\g.B) concludel’, 32X ¢(X)

3. Equality rules (quantifier free)

e 't =t forany termt
e FromI'|t; = t, concludel’, t, = t; for any terms; andts
e FromI',t; =ty andI’, ¢(¢1) concludel’, ¢(t2) for any termsg; andts

4. Arithmetical rules

(&) Quantifier-free defining equations for all primitive recursive relations and
functions



(b) FromT', —=¢(0) andT, ¢(y), ~¢(Sy) concludel’, =3z¢(x) if y does not
occur free in*

All other normal rules of second order arithmetic can be derived from these, for

example:
Fv ¢ F7 _‘¢7 _'_'¢
Fa _‘_‘d)

IfT' = {¢1, . ,¢k} then—I" = {—\(bl, ceey —\qbk}.

Intuitionistic logic andH A2 will be given by a system of natural deduction with
connectives/, 3, 32, v, and— (3 andV are redundant, but it is more convenient to
include themy¥? and A will not be needed, so they are excluded).

3 Friedman-Dragalin Translation

As noted above, a formula of PA? can be associated with a formuta™ of H A?
suchthatPA? - ¢ <& HA? I ¢~. The embedding’ used here is simpler, although
the result proved will be correspondingly weaker:

e ¢F = ¢ for atomice

¢ (~9)F =0 -1

o (pVY)F =P VP

o (Frg(x))” =Jwg(2)”
(3X¢(X))F =3X¢(X)"

Given a fixed formulax of H A?, a translationF' D(«) of formulas within H A2
can be defined so that— ¢P(*) for everye:

o pF'P() = ¢ (for g = Xty ...t,)

o ¢F'P(a) = ¢ v « (for other atomiay)
o LFP() = ¢

o (¢ — )P = gFPle) — yFD)
o (9 V)P = gDl v D)
(Bre ()P = Jrg(z) P

o (AX(X))FP) =3Xe(X)FP

Note that(Xt; ...t,)"P(® = Xt,...t, is not itself implied bya unless the
range ofX is restricted to the range &fD(«). This is hecessary to ensure tiab («)
commutes with substitution.

When composed these operations give a transformafidrom formulas ofP.A?
to formulas ofH A?:



o ¢V =¢ (forp = Xt;...t,)
o ¢V = ¢V « (for other atomiacp)
e (9)V=¢V —a
o (pv)N =N vyl
o Gr(@)N = Jag(x)V
o BXH(X)N = IXG(X)V
Lemma 1. The N-translation commutes with substitution:
¢(Ag.B)N = (\Y.0(Y)")(A\7.BY)

or, equivalently:
(@\7.B/Y])Y = o™ [Ng.BY /Y]

Proof. By induction ong(Y). When¢(Y) # Yt ...t,, just apply the inductive
hypothesis. When(Y) = Yt ...t, thenp(\y.B)N = (Bty ...t,)N = BNt .. .1,
while (A\Y.o(Y)M)(A\y.BY) = (A\Y.Yt1...t,)(A7.BY) = BNty .. . t,. O

Lemma 2. If d : T is a proof inP A% then(—I")V I « is provable inH A2.

Proof. Proved by induction on the last step®fThe following two deductions will be

used repeatedly:
I'o=a«a

I'=s¢—a (p—a)—a=(p—a) >«
¢ —a)—ma=a
O =0 p—oa=¢—a
p—a)—a=a o, 0 — a=«
I'=s (¢ —a)—a)—a p=(p—a)—a
o=«

e If disjustthe axionT, A, A then eithe(—A)Y = AVa — aand(——4)Y =
(AVa —a) - aor (m4)¥N = A4 - aand(——A)Y = (A — a) — a. In
either caseq follows by — F.

e If d concluded”, =(¢ Vv ¢) fromI', ¢ andI’, =) then:

(-D)YV, (N - a) —a=a (-D)YN, (YN - a) = a=«
(DN, ¢V = (DY, 9N = a
(DN, oV VN =
(DN (N VYN —a) ma=a

e If d concluded™, ¢ v ¥ from T, ¢ (the case fof", ¢ is similar) then:




N = N
(N VoN) —» a= (N vyl) - a N = oV vy
(N VYPN) — a, oV = «
(PN Vvyl) - a =N -«

and
(-D)YV, oV - a=a
(DY =@ —a)—a (e VYN) s a=eN —a
DN (N VYY) = a=a
e If d concluded” fromT', ¢ andI', —¢ then:

(DN, N - a = « (YN, (¢V —a) wa=a
(DN = (N - a) —a ()N = (N —-a) —a) =«
(-I)N =«

e If d concluded, —3z¢(x) from T, ~¢(y) then:
DY, )N —a) ma=a
DN, oy)N = a Jxg(x)V = Jrp(x)Y
(-D)N, Jzp(2)N =
(-D)YN, (Fzg(z)N —a) —a=a
e If d concluded”, Jx¢(x) from T, ¢(t) then:
o) = o(t)"
d(t)N = Jrg(z)N Jzp(z)N — a = Jzd(z)N — «
Jro(z)N — a, ()N = «
Jrp(x)N — a = ¢(t)N — a

and
D)V, ot)N - a=a
DY = @MY —a) o Fzg(@)N —a=gt)Y —a
(-D)V, Fzp(2)N — a = «a
o If d concluded’, =3z¢(x) from T, ¢(0) andl’, ~¢(y), #(Sy) then:
DY, o) — a, (e(Sy)N —a) ma=a
(DN, ¢y — @, d(Sy)V = a
DY, o) = a= oSy —a
DY, (0¥ —a) »a=a
(D)"Y, 6(0)N = a
(DY = 00N —a  (D)Y, 6(y)" — a=¢(Sy)¥ —a

(-D)N = vz[p(z)N — o]
(DN = o) —a o) = o)

(ﬁF)N7 (b(y)N =«



and
DN, o) = a  Fag(x)Y = Jze(x)Y
(-D)YN, 3z ()N = o
(=), Bzo(z)N — a) = a =«

e Supposel : ¢. Theng is also an axiom off A2, so:
¢p—a=¢—a = ¢
o —a=a«a
e If d concluded”, 3X ¢(X) from T, p(\y.B) then:
o(\g.B)N = o(\g.B)"
IXH(X)N - a=IXHX)N = a d(\7.B)N = IXp(X)N
AXH(X)N — a,¢(\j.B)N = «
IX(X)N — a= s(A\y.B)N — a

and
(-D)YV, o(\7.B)N — a =«
IXp(X)N — a= ¢(A\7.B)N — « (-I)N = (p(\g.B)N — a) — «
()N, IXH(X)N — a =«

e If d concluded”, -3X¢(X) fromT, ~¢(Y") then:
DY (V)Y —a) s a=a
(DY, oY) = a IXH(X)Y = IX(X)Y
(-T)V,3IXp(X)N = «
(DY, BXp(X)N - a) »a=«

4 HRO?

The language off RO? is arithmetic augmented by definitions equating every hered-
itarily partially recursive function of finite type with a number. More precisely, each
partially recursive function is associated with it§d&l number:, and{z}(y) is used
to denote the (possibly undefined) value of the function associated:witien applied
to y; when{z}(y) is defined, this is denoteft:} (y) |. For technical reason8,should
be the constantlg function.

The functionals in question are the second order functionals of system F; thie set
of types of these functionals is given by:

e The type0 of the natural numbers is i
o lfo,reTthenc - 7T

e For anyn, a variable typex,, € T



If o,7€Tthenc x €T
If o[a,] € T thenVay,.ola,) €T

If ola,] € T then3day,.ola,) €T

HRO? is given by associating to eaehec T a set of numberd,, (representing
the numbers denoting functions of that type) and to each type variadbleariableV,
ranging over the sefs,:

All numbers are ifl

If oo, € T is a type variable then there is a corresponding set variable
x €V, ifforanyy € V,, {z}(y) € V-

z € Voxr if (x)g € V, and(z); € V;

r € Vay,.olay] ifforanyV e T,z € V10, 1[V/Va,]

T € Jay,.0lay] if there is somd” € T'such thatr € V;(4,1[V/Va, ]

Full details of the construction are given in [Troelstra, 1973].

5 Realizability

The modified realizability? RO*-mr assigns a predicat®ealizes, from HRO?, to
each formulap of HA?. A number realizes a formula when the term it represents
executes a computation which demonstrates the truth of the formula. It is then possible
to assign a specific term to a deductibwhich realizes the conclusion df

In order to define the realizability, it is first necessary to define a predicate which is
satisfied when a number encodes a functional of the appropriate type to realize a for-
mula. Following the notation in [Troelstra, 1973], a unary second order vaiigplef
HRO? is uniquely associated to each second order varidbtd H A2. For technical
reasons, the set denoted by, must contaird, so3U % will represent quantification
only over those formulae which are satisfiedtbyrhen:

1.

2
3
4.
5
6

Type,_,(z) = [z = x] wherez is not free ins or ¢

. Typeyp(z) = Uiz

- Typegyy (2) = ((2)o = 0 = Typey((2)1)) A ((2)o # 1 — Typey ((2)1))

Typey_.(7) = Vy(Type,(y) — {z}(y) | AType,({z}(y)))

- Typesy () (%) = Typey(()y) ((2)1)

- Typesxng(x)(®) = FUx Typey x)(x)

An n + 1-ary second order variable & RO?, X*, must be uniquely associated to
eachn-ary second order variabl€ of H A2. Then the realizability is given by:



1. Realizes;—¢(z) = [s = 1]

N

. Realizes y () = X*(z,t) A Typey ()

Realizesgyy(z) = ((2)o = 0 — Realizesy(
A((x)o # 0 — Realizesy ((

)

)1
1))

(x
x)
4 Realizesy .y () = Typey_ ()

' AVy(Realizes, (y) — {x}(y) | ARealizesy({z}(y)))
5. Realizessy, ey () = Realizesy((q)y)((2)1)
6. Realizessyng(x)(x) = FY*IUY Realizes sy ()

The rules ofPA? are not sound for this realizability, but théif-translations are;
for instance, there is no term corresponding to the axiom-¢, but¢™ — a, ¢~V —
a — a F « does correspond to a term. In particularaif= 3z A(z) where A
is a primitive recursive relation then we sayP A2-realizes a formulay of PA? if
Realizes,~ (). Note thatRealizes, (x) = A((x)o), SO

Type_g)~ (2) = Vy(Typeyn (y) — {z}(y) 1)

Realizes 4~ = Type(ﬁ@N(y) A Vy(Realizes,v (y) — {z}(y) | AA(({x}(y))o))

« may have additional free variables so long as they are renamed to be different
from the eigenvalues in any application of the inductiorvawules. Any free vari-
ables other thar will in general also be a free variable Realizes,. In this case,
Realizesg (t) means that is a term (possibly with the same free variablesiysealiz-
ing ¢ for every value of those variables.

In general, we use for a first order variable intended to satisfype,~ (o) and
whenl' = {¢1,..., ¢} is asequent, we intener = (ay,, .. ., oy, ) to be a sequence
of variables such thalype,~ (o, ).

Lemma3. 1. Write[«] for [\x Typep;(z)/Ux]. Then
Typeyxp ] = Typey sy
2. Write[t] for [Az Ay Realizespgz(x)/X*]. Then
Realizes ;v (%) [+][f] < Realizes g (2)
Proof. 1. Proved by a straightforward induction 60X ). When(X) = Xt then

Typexi{@)[] = Ux («)[+] = Typepi()

The other cases just apply the inductive hypothesis.



2. Proved by induction on(X). Whené(X) = Xt then

Realizesy o) [{[f] = X*(z,2)[{] A Typex ()
= Realizesgy(x) A Typepgp(z)
— Realizes zp(z)

The other cases just apply the inductive hypothesis.
O

A deduction ofl" - ¢ in HA? can be assigned a term &f RO?-mr with free
variables corresponding to the elementd’adnd which realize® whenever the free
variables realize the corresponding element§ .off I" or ¢ has free variables, those
will in general also be free variables of the term, and for any assignment of values to
those variables, the term will realize For axioms, the term i8, and, for example, the
deductionM becomes\a.t wheret is the term correspond t

's¢—vy

Free variables which appear in the premise but not conclusion of a proof rule can
be eliminated in the corresponding terms. Specifically, appliesvI, V21, 31, VE,

— F, or3F to dy (andd; andds when appropriate) and or X" is a free variable
appearing indg, dy, or d, but not ind then if¢y (¢1, t2) are the corresponding terms,
replace all occurrences ofwith 0 and all occurrences of ™ with \77.(¥.X?) X before
constructingt. For instance supposé : I' = ¢ — ¢(z,X) andd; : ¥ = ¢
with x and X variable not appearing itt, I', or . Then the corresponding term is
to[0/2][M7.(VX ) X/ X](t1).

Theorem 1. If d is a deduction of  in PA? then there is a ternk; with free variables
amonga-r UFV(I') UFV(a) such that ifType 4~ (a-g) for eachg € T thenH A?
proves(Aar.Fy)(a-r) | and ifRealizes 4~ (a-4) holds for eachy € I' thenH A?
provesA(((Aa—r.Fq)(a-r))o).

Proof. Sinced is a deduction of in PAZ2, there is a deductio® of (=I')V - 3z A(x)

in HA2. The theorem could be proved by simply appealing to the realization given
in [Troelstra, 1973]. However this can also be proved directly by defining the term
inductively on the last step af; the appropriate can be easily found by taking the
H A? deduction corresponding to an inferenceAd? and applying the Curry-Howard
isomorphism.

It will be necessary to remove extraneous free variables during this process. If
applies the cut rule or the first or second ordeules, there may be free first or second
order variables which appear in the premises but not the conclusiad.: b is an
application of one of these three rulesdp: ¢; (andd, : @5 in the case of cut) and
x or X is a free variable inp; (and¢, in the case of cut) which does not appeapin

then the inference
di[0/2]A7.(VXO)X]  (da[0/2][AF.(¥X?)X])

d
is also a valid inference. The corresponding termi®,/ z][A\g.(VX?) X] andt> [0/z][Ag.(VX?) X]
should be used in the inductive constructiort.of



e d is any of the quantifier free axioms. Th&n= {¢1,...,¢x} and at least one
¢; must be true, therefore it is never possibledof- to realize—T", so

F;=0
e dis an axiom of the form", A, —A. Then:
Fy={a--a}(a-a)
e dconcluded”, ¢ v+ fromd’' : T, ¢ (the case forl’ : T, 1) is similar). Then:
Fq= (Mo . Fa ) ("Aag{a—gvy) (0, ag)7)

e d concludesl’, —(¢ V ¢) from dy : T',—¢ andd; : T',—«. Then primitive
recursion can be used to define by cases:

r{ (Ao F0) (TAa—g {amg }((agvy)1) ) if (agyy)o =0

F'Z1 Qo P (Aamy{amy H(@gva)n) ) 1 (apva)o # 0

and define
Fd = {Oz_|_|(¢vw)}(r)\04¢vw.Fh)

e d concluded’, 3z¢(x) fromd’' : T, ¢(t). If t has any free variables that do not
occur in the conclusion the should be replaced with F,. Then:

Fo = (Aa—gy-Fa ) (" Aoy {a-geg ) F({E age)) )

e d concludesl’, ~3z¢(x) from d' : T',—¢(y). ThenF, is a term which may
containy free andy does not occur free ifi. So:

Fo= {a-—z2¢@) T AQ326(2) - (AYAQ—g(y) - Far)
((Q32¢(2))0) (A=g(y)-{@-p(y) F(QF26(2))1)) )

e d derivesI’ from dy : T',—¢ andd; : T',¢. Replace any free variables which
appear indy andd; but not ind with 0 (for first order variables) anfv.X?) X
(for second order variables). Then:

Fd = ()\Oéﬁwﬁ.Fo)(l—/\Oéﬁ(z,.Fl—‘)

e d is a deduction ol’, =3z¢(x) from dy : T', ~¢(0) andd; : T, ¢(y), ¢ (Sy).
Then construct a functioh by primitive recursion:

h(0) = "Xy (0)- (Mg (0) - Fo ) (A=g(0) - { =4 (0) H g (0)))

h(Sy) = T(Aag(y)-Ag(sy)-(Aamgp(sy)-Fa, )
(Aa—g(sy)-1-g(sy) FHag(sy)))) (h(y))T
Note thatRealizes 4y~ (h(n)) for everyn.
Then:

Fi = {a-—32¢(2) }(A326(2) 1 ((Q326(2))0) } ((Q326(2)) 1))

10



e disadeduction of', 3X¢(X) fromd : T, ¢(\y.B)
Fa = (Aa-gog.p)-Fa ) ("Aagog.s)-{oaxexn) Hagogn) )

Free variables appearing it but notd should be replaced.

e dis adeduction of’, ~3X¢(X) fromd' : T, -¢(Y) then:

Fo= {asxex) M Aazxgx) - [(Aagy)-(Aa——gyvy-Far)
(MAa-gvy{agv) Hagy)) D)(aaxex)] )

O

Theorem 2. If d is a deduction oBx A(z) whereA(z) is primitive recursive then it is
possible to construct a termof H RO? with the same free variables &s:A(z) such
that A(t) holds for every value of those variables.

Proof. Cutd with a hypothesi& : —3x A(x); this gives a proofl’ of the empty sequent.
Let [, = {@--304(2) } (" AQ324(2)-0324(2) ') Then, applying the previous theorem,
t = Fp is a term with no free variables, and therefeYgt),). O

If A has free variables other thanthey will also, in general, be free variables in
the corresponding term, so as an easy corollary we have:

Theorem 3. If f is some function and is primitive recursive relation symbol repre-
senting the graph of and PA? - Vy3x A(y, 2) then there is a termin H RO? with
free variabley such thatf = \y.t.

Proof. SinceP A2 provesvy3zA(y, =), there is also & A? deductiond of 3z A(y, x).
Then the term(Fy;), given by the previous theorem suffices. O
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