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Abstract

We present a realizability interpretation for classical analysis–an association
of a term to every proof so that the terms assigned to existential formulas repre-
sent witnesses to the truth of that formula. For classical proofs ofΠ2 sentences
∀x∃yA(x, y), this provides a recursive type 1 function which computes the func-
tion given byf(x) = y iff y is the least number such thatA(x, y).

1 Introduction

Although both classical and intuitionistic arithmetic prove the sameΠ2 sentences,
proofs in the intuitionistic version generally provide more information. The Curry-
Howard isomorphism associates them with realizingλ terms, which associate numeri-
cal witnesses to existential quantifiers and appropriate functionals to strings of quanti-
fiers.

[Avigad, 2000] demonstrates a method of extending this realization to classical
arithmetic to find numerical witnesses toΣ1 sentences and type 1 functions witnessing
Π2 sentences. This method of witness extraction was derived from the composition of
an embedding of classical logic in intuitionistic logic, the Friedman-Dragalin transla-
tion (first described in [Friedman, 1978] and [Dragalin, 1980]), and the Curry-Howard
isomorphism.

In this paper we extend this method to second order classical arithmetic. As with
Avigad’s version, the actual embedding of classical logic in intuitionistic logic is un-
usually simple; in particular, unlike the double-negation translation, an atomic formula
φ in classical logic is unchanged in the intuitionistic embedding. This leads to a differ-
ent type of equivalence between the theories: if we can proveφ in classical logic then
φ¬¬ can be proven in intuitionistic logic. By contrast, under the embedding used here,
we will be able to prove instead that(¬φ)E ` ⊥.

The embedding used here is simplified by not allowing implication or universal
quantifiers in the classical language, instead building them in the usual way from nega-
tion, disjunction, and existential quantifiers. This means that, for example,∀xφ is
embedded is¬∃x¬φ: no universal quantifiers appear in the range of the embedding.
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In order to findλ terms corresponding to intuitionistic proofs, theHRO2 − mr
realizability given in [Troelstra, 1973] will be used, based on Kreisel’s modified real-
izability presented in [Kreisel, 1959] and [Kreisel, 1962]. The systemHRO2 encodes
functionals as numbers and the modified realizability associates a type to each formula
of HA2 and a particular term of that type to each proof of the formula.

We will show that each proof of aΣ1 formula∃xA(x) in HA2 can be converted
into a termt of HRO2 such that analysis proves thatt is defined and satisfiesA for
every value of any parameters appearing inA.

2 Preliminaries

A Tait style calculus based on the one in [Schwichtenberg, 1977] will be used forPA2.
The primary difference is that¬ is taken as a connective, rather than a shorthand for the
negation-normal form. Atomic formulae will be either of the forms = t orXt1 . . . tn
(wheres, t, t1, . . . , tn are terms andX is ann-ary second order variable). The connec-
tives will be¬, ∨, ∃, and∃2. Other connectives can be defined in the usual way.

The rules of this system will be:

1. Propositional Rules

(a) Γ, A,¬A for any atomicA

(b) FromΓ,¬φ andΓ,¬ψ concludeΓ,¬(φ ∨ ψ)

(c) FromΓ, φ concludeΓ, φ ∨ ψ andΓ, ψ ∨ φ
(d) FromΓ, φ andΓ,¬φ concludeΓ

2. Quantifier rules

(a) FromΓ,¬φ(y) concludeΓ,¬∃xφ(x) if y does not occur free in any for-
mula ofΓ

(b) FromΓ,¬φ(Y ) concludeΓ,¬∃2Xφ(X) if Y does not occur free in any
formula ofΓ

(c) FromΓ, φ(t) concludeΓ,∃xφ(x)

(d) FromΓ, φ(λ~y.B) concludeΓ,∃2Xφ(X)

3. Equality rules (quantifier free)

• Γ, t = t for any termt

• FromΓ, t1 = t2 concludeΓ, t2 = t1 for any termst1 andt2

• FromΓ, t1 = t2 andΓ, φ(t1) concludeΓ, φ(t2) for any termst1 andt2

4. Arithmetical rules

(a) Quantifier-free defining equations for all primitive recursive relations and
functions
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(b) FromΓ,¬φ(0) andΓ, φ(y),¬φ(Sy) concludeΓ,¬∃xφ(x) if y does not
occur free inΓ

All other normal rules of second order arithmetic can be derived from these, for
example:

Γ, φ Γ,¬φ,¬¬φ
Γ,¬¬φ

If Γ = {φ1, . . . , φk} then¬Γ = {¬φ1, . . . ,¬φk}.
Intuitionistic logic andHA2 will be given by a system of natural deduction with

connectives∀, ∃, ∃2, ∨, and→ (∃ and∨ are redundant, but it is more convenient to
include them;∀2 and∧ will not be needed, so they are excluded).

3 Friedman-Dragalin Translation

As noted above, a formulaφ of PA2 can be associated with a formulaφ¬¬ of HA2

such thatPA2 ` φ ⇔ HA2 ` φ¬¬. The embeddingE used here is simpler, although
the result proved will be correspondingly weaker:

• φE ≡ φ for atomicφ

• (¬φ)E ≡ φE → ⊥

• (φ ∨ ψ)E ≡ φE ∨ ψE

• (∃xφ(x))E ≡ ∃xφ(x)E

• (∃Xφ(X))E ≡ ∃Xφ(X)E

Given a fixed formulaα of HA2, a translationFD(α) of formulas withinHA2

can be defined so thatα→ φFD(α) for everyφ:

• φFD(α) ≡ φ (for φ = Xt1 . . . tn)

• φFD(α) ≡ φ ∨ α (for other atomicφ)

• ⊥FD(α) ≡ α

• (φ→ ψ)FD(α) ≡ φFD(α) → ψFD(α)

• (φ ∨ ψ)FD(α) ≡ φFD(α) ∨ ψFD(α)

• (∃xφ(x))FD(α) ≡ ∃xφ(x)FD(α)

• (∃Xφ(X))FD(α) ≡ ∃Xφ(X)FD(α)

Note that(Xt1 . . . tn)FD(α) = Xt1 . . . tn is not itself implied byα unless the
range ofX is restricted to the range ofFD(α). This is necessary to ensure thatFD(α)
commutes with substitution.

When composed these operations give a transformationN from formulas ofPA2

to formulas ofHA2:
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• φN ≡ φ (for φ = Xt1 . . . tn)

• φN ≡ φ ∨ α (for other atomicφ)

• (¬φ)N ≡ φN → α

• (φ ∨ ψ)N ≡ φN ∨ ψN

• (∃xφ(x))N ≡ ∃xφ(x)N

• (∃Xφ(X))N ≡ ∃Xφ(X)N

Lemma 1. TheN -translation commutes with substitution:

φ(λ~y.B)N = (λY.φ(Y )N )(λ~y.BN )

or, equivalently:
(φ[λ~y.B/Y ])N = φN [λ~y.BN/Y ]

Proof. By induction onφ(Y ). Whenφ(Y ) 6= Y t1 . . . tn, just apply the inductive
hypothesis. Whenφ(Y ) = Y t1 . . . tn thenφ(λ~y.B)N = (Bt1 . . . tn)N = BN t1 . . . tn
while (λY.φ(Y )N )(λy.BN ) = (λY.Y t1 . . . tn)(λ~y.BN ) = BN t1 . . . tn.

Lemma 2. If d : Γ is a proof inPA2 then(¬Γ)N ` α is provable inHA2.

Proof. Proved by induction on the last step ofd. The following two deductions will be
used repeatedly:

Γ, φ⇒ α

Γ ⇒ φ→ α (φ→ α) → α⇒ (φ→ α) → α

Γ, (φ→ α) → α⇒ α

Γ, (φ→ α) → α⇒ α

Γ ⇒ ((φ→ α) → α) → α

φ⇒ φ φ→ α⇒ φ→ α

φ, φ→ α⇒ α

φ⇒ (φ→ α) → α

Γ, φ⇒ α

• If d is just the axiomΓ, A,¬A then either(¬A)N = A∨α→ α and(¬¬A)N =
(A ∨ α → α) → α or (¬A)N = A → α and(¬¬A)N = (A → α) → α. In
either case,α follows by→ E.

• If d concludesΓ,¬(φ ∨ ψ) from Γ,¬φ andΓ,¬ψ then:

(¬Γ)N , (φN → α) → α⇒ α

(¬Γ)N , φN ⇒ α

(¬Γ)N , (ψN → α) → α⇒ α

(¬Γ)N , ψN ⇒ α

(¬Γ)N , φN ∨ ψN ⇒ α

(¬Γ)N , (φN ∨ ψN → α) → α⇒ α

• If d concludesΓ, φ ∨ ψ from Γ, φ (the case forΓ, ψ is similar) then:
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(φN ∨ ψN ) → α⇒ (φN ∨ ψN ) → α

φN ⇒ φN

φN ⇒ φN ∨ ψN

(φN ∨ ψN ) → α, φN ⇒ α

(φN ∨ ψN ) → α⇒ φN → α

and
(¬Γ)N , φN → α⇒ α

(¬Γ)N ⇒ (φN → α) → α (φN ∨ ψN ) → α⇒ φN → α

(¬Γ)N , (φN ∨ ψN ) → α⇒ α

• If d concludesΓ from Γ, φ andΓ,¬φ then:

(¬Γ)N , φN → α⇒ α

(¬Γ)N ⇒ (φN → α) → α

(¬Γ)N , (φN → α) → α⇒ α

(¬Γ)N ⇒ ((φN → α) → α) → α

(¬Γ)N ⇒ α

• If d concludesΓ,¬∃xφ(x) from Γ,¬φ(y) then:

(¬Γ)N , (φ(y)N → α) → α⇒ α

(¬Γ)N , φ(y)N ⇒ α ∃xφ(x)N ⇒ ∃xφ(x)N

(¬Γ)N ,∃xφ(x)N ⇒ α

(¬Γ)N , (∃xφ(x)N → α) → α⇒ α

• If d concludesΓ,∃xφ(x) from Γ, φ(t) then:

φ(t)N ⇒ φ(t)N

φ(t)N ⇒ ∃xφ(x)N ∃xφ(x)N → α⇒ ∃xφ(x)N → α

∃xφ(x)N → α, φ(t)N ⇒ α

∃xφ(x)N → α⇒ φ(t)N → α

and
(¬Γ)N , φ(t)N → α⇒ α

(¬Γ)N ⇒ (φ(t)N → α) → α ∃xφ(x)N → α⇒ φ(t)N → α

(¬Γ)N ,∃xφ(x)N → α⇒ α

• If d concludesΓ,¬∃xφ(x) from Γ, φ(0) andΓ,¬φ(y), φ(Sy) then:

(¬Γ)N , φ(y)N → α, (φ(Sy)N → α) → α⇒ α

(¬Γ)N , φ(y)N → α, φ(Sy)N ⇒ α

(¬Γ)N , φ(y)N → α⇒ φ(Sy)N → α

(¬Γ)N , (φ(0)N → α) → α⇒ α

(¬Γ)N , φ(0)N ⇒ α

(¬Γ)N ⇒ φ(0)N → α (¬Γ)N , φ(y)N → α⇒ φ(Sy)N → α

(¬Γ)N ⇒ ∀x[φ(x)N → α]

(¬Γ)N ⇒ φ(y)N → α φ(y)N ⇒ φ(y)N

(¬Γ)N , φ(y)N ⇒ α
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and
(¬Γ)N , φ(y)N ⇒ α ∃xφ(x)N ⇒ ∃xφ(x)N

(¬Γ)N ,∃xφ(x)N ⇒ α

(¬Γ)N , (∃xφ(x)N → α) → α⇒ α

• Supposed : φ. Thenφ is also an axiom ofHA2, so:

φ→ α⇒ φ→ α ⇒ φ

φ→ α⇒ α

• If d concludesΓ,∃Xφ(X) from Γ, φ(λ~y.B) then:

∃Xφ(X)N → α⇒ ∃Xφ(X)N → α

φ(λ~y.B)N ⇒ φ(λ~y.B)N

φ(λ~y.B)N ⇒ ∃Xφ(X)N

∃Xφ(X)N → α, φ(λ~y.B)N ⇒ α

∃Xφ(X)N → α⇒ φ(λ~y.B)N → α

and
(¬Γ)N , φ(λ~y.B)N → α⇒ α

∃Xφ(X)N → α⇒ φ(λ~y.B)N → α (¬Γ)N ⇒ (φ(λ~y.B)N → α) → α

(¬Γ)N ,∃Xφ(X)N → α⇒ α

• If d concludesΓ,¬∃Xφ(X) from Γ,¬φ(Y ) then:

(¬Γ)N , (φ(Y )N → α) → α⇒ α

(¬Γ)N , φ(Y )N ⇒ α ∃Xφ(X)N ⇒ ∃Xφ(X)N

(¬Γ)N ,∃Xφ(X)N ⇒ α

(¬Γ)N , (∃Xφ(X)N → α) → α⇒ α

4 HRO2

The language ofHRO2 is arithmetic augmented by definitions equating every hered-
itarily partially recursive function of finite type with a number. More precisely, each
partially recursive function is associated with its Gödel numberx, and{x}(y) is used
to denote the (possibly undefined) value of the function associated withxwhen applied
to y; when{x}(y) is defined, this is denoted{x}(y) ↓. For technical reasons,0 should
be the constantly0 function.

The functionals in question are the second order functionals of system F; the setT
of types of these functionals is given by:

• The type0 of the natural numbers is inT

• If σ, τ ∈ T thenσ → τ ∈ T

• For anyn, a variable typeαn ∈ T
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• If σ, τ ∈ T thenσ × τ ∈ T

• If σ[αn] ∈ T then∀αn.σ[αn] ∈ T

• If σ[αn] ∈ T then∃αn.σ[αn] ∈ T

HRO2 is given by associating to eachσ ∈ T a set of numbersVσ (representing
the numbers denoting functions of that type) and to each type variableα a variableVα
ranging over the setsVσ:

• All numbers are inV0

• If αn ∈ T is a type variable then there is a corresponding set variableVαn

• x ∈ Vσ→τ if for any y ∈ Vσ, {x}(y) ∈ Vτ

• x ∈ Vσ×τ if (x)0 ∈ Vσ and(x)1 ∈ Vτ

• x ∈ ∀αn.σ[αn] if for any V ∈ T , x ∈ Vσ[αn][V/Vαn ]

• x ∈ ∃αn.σ[αn] if there is someV ∈ T such thatx ∈ Vσ[αn][V/Vαn
]

Full details of the construction are given in [Troelstra, 1973].

5 Realizability

The modified realizabilityHRO2-mr assigns a predicate,Realizesφ from HRO2, to
each formulaφ of HA2. A number realizes a formulaφ when the term it represents
executes a computation which demonstrates the truth of the formula. It is then possible
to assign a specific term to a deductiond which realizes the conclusion ofd.

In order to define the realizability, it is first necessary to define a predicate which is
satisfied when a number encodes a functional of the appropriate type to realize a for-
mula. Following the notation in [Troelstra, 1973], a unary second order variableU1

X of
HRO2 is uniquely associated to each second order variableX of HA2. For technical
reasons, the set denoted byU1

X must contain0, so∃U1
X will represent quantification

only over those formulae which are satisfied by0. Then:

1. Types=t(x) ≡ [x = x] wherex is not free ins or t

2. TypeX~t(x) ≡ U1
Xx

3. Typeφ∨ψ(x) ≡ ((x)0 = 0 → Typeφ((x)1)) ∧ ((x)0 6= 1 → Typeψ((x)1))

4. Typeφ→ψ(x) ≡ ∀y(Typeφ(y) → {x}(y) ↓ ∧Typeψ({x}(y)))

5. Type∃yφ(y)(x) ≡ Typeφ((x)0)((x)1)

6. Type∃Xnφ(X)(x) ≡ ∃U1
X Typeφ(X)(x)

An n+ 1-ary second order variable ofHRO2,X∗, must be uniquely associated to
eachn-ary second order variableX of HA2. Then the realizability is given by:
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1. Realizess=t(x) ≡ [s = t]

2. RealizesX~t(x) ≡ X∗(x,~t) ∧ TypeX~t(x)

3.
Realizesφ∨ψ(x) ≡ ((x)0 = 0 → Realizesφ((x)1))

∧((x)0 6= 0 → Realizesψ((x)1))

4.
Realizesφ→ψ(x) ≡ Typeφ→ψ(x)

∧∀y(Realizesφ(y) → {x}(y) ↓ ∧Realizesψ({x}(y)))

5. Realizes∃yφ(y)(x) ≡ Realizesφ((x)0)((x)1)

6. Realizes∃Xnφ(X)(x) ≡ ∃Y ∗∃U1
Y Realizesφ(Y )(x)

The rules ofPA2 are not sound for this realizability, but theirN -translations are;
for instance, there is no term corresponding to the axiomφ ∨ ¬φ, butφN → α, φN →
α → α ` α does correspond to a term. In particular, ifα = ∃xA(x) whereA
is a primitive recursive relation then we sayx PA2-realizes a formulaφ of PA2 if
RealizesφN (x). Note thatRealizesα(x) ≡ A((x)0), so

Type(¬φ)N (x) ≡ ∀y(TypeφN (y) → {x}(y) ↓)

Realizes(¬φ)N ≡ Type(¬φ)N (y) ∧ ∀y(RealizesφN (y) → {x}(y) ↓ ∧A(({x}(y))0))

α may have additional free variables so long as they are renamed to be different
from the eigenvalues in any application of the induction or∀ rules. Any free vari-
ables other thanx will in general also be a free variable inRealizesφ. In this case,
Realizesφ(t) means thatt is a term (possibly with the same free variables asA) realiz-
ing φ for every value of those variables.

In general, we useαφ for a first order variable intended to satisfyTypeφN (αφ) and
whenΓ = {φ1, . . . , φk} is a sequent, we intendαΓ = (αφ1 , . . . , αφk

) to be a sequence
of variables such thatTypeφN

i
(αφi).

Lemma 3. 1. Write[∗] for [λxTypeB~y(x)/U1
X ]. Then

Typeφ(X~t)[∗] = Typeφ(B~t)

2. Write[†] for [λxλ~yRealizesB~y(x)/X∗]. Then

Realizesφ(X~t)(x)[∗][†] ↔ Realizesφ(B~t)(x)

Proof. 1. Proved by a straightforward induction onφ(X). Whenφ(X) = X~t then

TypeX~t(x)[∗] = U1
X(x)[∗] = TypeB~t(x)

The other cases just apply the inductive hypothesis.
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2. Proved by induction onφ(X). Whenφ(X) = X~t then

RealizesX~t(x)[∗][†] = X∗(x,~t)[†] ∧ TypeX~t(x)[∗]
= RealizesB~t(x) ∧ TypeB~t(x)
↔ RealizesB~t(x)

The other cases just apply the inductive hypothesis.

A deduction ofΓ ` φ in HA2 can be assigned a term ofHRO2-mr with free
variables corresponding to the elements ofΓ and which realizesφ whenever the free
variables realize the corresponding elements ofΓ. If Γ or φ has free variables, those
will in general also be free variables of the term, and for any assignment of values to
those variables, the term will realizeφ. For axioms, the term is0, and, for example, the

deduction
d : Γ, φ⇒ ψ

Γ ⇒ φ→ ψ
becomesλa.t wheret is the term correspond tod.

Free variables which appear in the premise but not conclusion of a proof rule can
be eliminated in the corresponding terms. Specifically, ifd applies∀I, ∀2I, ∃I, ∨E,
→ E, or ∃E to d0 (andd1 andd2 when appropriate) andx or Xn is a free variable
appearing ind0, d1, or d2 but not ind then if t0 (t1, t2) are the corresponding terms,
replace all occurrences ofx with 0 and all occurrences ofXn with λ~y.(∀X0)X before
constructingt. For instance supposed0 : Γ ⇒ ψ → φ(x,X) andd1 : Σ ⇒ ψ
with x andXn variable not appearing inψ, Γ, or Σ. Then the corresponding term is
t0[0/x][λ~y.(∀X0)X/X](t1).

Theorem 1. If d is a deduction ofΓ in PA2 then there is a termFd with free variables
amongα¬Γ∪FV(Γ)∪FV(α) such that ifType(¬φ)N (α¬φ) for eachφ ∈ Γ thenHA2

proves(λα¬Γ.Fd)(α¬Γ) ↓ and ifRealizes(¬φ)N (α¬φ) holds for eachφ ∈ Γ thenHA2

provesA(((λα¬Γ.Fd)(α¬Γ))0).

Proof. Sinced is a deduction ofΓ in PA2, there is a deductionD of (¬Γ)N ` ∃xA(x)
in HA2. The theorem could be proved by simply appealing to the realization given
in [Troelstra, 1973]. However this can also be proved directly by defining the term
inductively on the last step ofd; the appropriate can be easily found by taking the
HA2 deduction corresponding to an inference inPA2 and applying the Curry-Howard
isomorphism.

It will be necessary to remove extraneous free variables during this process. Ifd
applies the cut rule or the first or second order∃ rules, there may be free first or second
order variables which appear in the premises but not the conclusion. Ifd : φ is an
application of one of these three rules tod1 : φ1 (andd2 : φ2 in the case of cut) and
x orX is a free variable inφ1 (andφ2 in the case of cut) which does not appear inφ
then the inference

d1[0/x][λ~y.(∀X0)X]
(
d2[0/x][λ~y.(∀X0)X]

)
d

is also a valid inference. The corresponding terms,t1[0/x][λ~y.(∀X0)X] andt2[0/x][λ~y.(∀X0)X]
should be used in the inductive construction oft.
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• d is any of the quantifier free axioms. ThenΓ = {φ1, . . . , φk} and at least one
φi must be true, therefore it is never possible forα¬Γ to realize¬Γ, so

Fd ≡ 0

• d is an axiom of the formΓ, A,¬A. Then:

Fd ≡ {α¬¬A}(α¬A)

• d concludesΓ, φ ∨ ψ from d′ : Γ, φ (the case ford′ : Γ, ψ is similar). Then:

Fd ≡ (λα¬φ.Fd′)(pλαφ.{α¬(φ∨ψ)}(〈0, αφ)q)

• d concludesΓ,¬(φ ∨ ψ) from d0 : Γ,¬φ and d1 : Γ,¬ψ. Then primitive
recursion can be used to define by cases:

F ′ ≡ p

{
(λα¬¬φ.F0)(pλα¬φ.{α¬φ}((αφ∨ψ)1)q) if (αφ∨ψ)0 = 0
(λα¬¬ψ.F1)(pλα¬ψ.{α¬ψ}((αφ∨ψ)1)q) if (αφ∨ψ)0 6= 0 q

and define
Fd ≡ {α¬¬(φ∨ψ)}(pλαφ∨ψ.F ′q)

• d concludesΓ,∃xφ(x) from d′ : Γ, φ(t). If t has any free variables that do not
occur in the conclusion the should be replaced with0 in Fd′ . Then:

Fd = (λα¬φ(t).Fd′)(pλαφ(t).{α¬∃xφ(x)}(〈t, αφ(t)〉)q)

• d concludesΓ,¬∃xφ(x) from d′ : Γ,¬φ(y). ThenFd′ is a term which may
containy free andy does not occur free inΓ. So:

Fd ≡ {α¬¬∃xφ(x)}(pλα∃xφ(x).(λyλα¬¬φ(y).Fd′)
((α∃xφ(x))0)(λα¬φ(y).{α¬φ(y)}((α∃xφ(x))1))q)

• d derivesΓ from d0 : Γ,¬φ andd1 : Γ, φ. Replace any free variables which
appear ind0 andd1 but not ind with 0 (for first order variables) and(∀X0)X
(for second order variables). Then:

Fd ≡ (λα¬¬φ.F0)(pλα¬φ.F1q)

• d is a deduction ofΓ,¬∃xφ(x) from d0 : Γ,¬φ(0) andd1 : Γ, φ(y),¬φ(Sy).
Then construct a functionh by primitive recursion:

h(0) ≡ pλαφ(0).(λα¬¬φ(0).Fd0)(λα¬φ(0).{α¬φ(0)}(αφ(0)))q

h(Sy) ≡ p(λα¬φ(y).λαφ(Sy).(λα¬¬φ(Sy).Fd1)
(λα¬φ(Sy).{α¬φ(Sy)}(αφ(Sy))))(h(y))q

Note thatRealizes(¬φ(n))N (h(n)) for everyn.

Then:

Fd ≡ {α¬¬∃xφ(x)}(λα∃xφ(x).{h((α∃xφ(x))0)}((α∃xφ(x))1))
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• d is a deduction ofΓ,∃Xφ(X) from d′ : Γ, φ(λ~y.B)

Fd ≡ (λα¬φ(λ~y.B).Fd′)(pλαφ(λ~y.B).{α∃Xφ(X)}(αφ(λ~y.B))q)

Free variables appearing ind′ but notd should be replaced.

• d is a deduction ofΓ,¬∃Xφ(X) from d′ : Γ,¬φ(Y ) then:

Fd ≡ {α¬¬∃Xφ(X)}(pλα∃Xφ(X).[(λαφ(Y ).(λα¬¬φ(Y ).Fd′)
(pλα¬φ(Y ).{α¬φ(Y )}(αφ(Y ))q))(α∃Xφ(X))]q)

Theorem 2. If d is a deduction of∃xA(x) whereA(x) is primitive recursive then it is
possible to construct a termt ofHRO2 with the same free variables as∃xA(x) such
thatA(t) holds for every value of those variables.

Proof. Cutdwith a hypothesish : ¬∃xA(x); this gives a proofd′ of the empty sequent.
Let Fh = {α¬¬∃xA(x)}(pλα∃xA(x).α∃xA(x)q). Then, applying the previous theorem,
t = Fd′ is a term with no free variables, and thereforeA((t)0).

If A has free variables other thanx, they will also, in general, be free variables in
the corresponding term, so as an easy corollary we have:

Theorem 3. If f is some function andA is primitive recursive relation symbol repre-
senting the graph off andPA2 ` ∀y∃xA(y, x) then there is a termt in HRO2 with
free variabley such thatf = λy.t.

Proof. SincePA2 proves∀y∃xA(y, x), there is also aPA2 deductiond of ∃xA(y, x).
Then the term(Fd)0 given by the previous theorem suffices.
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