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Abstract—We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations
of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface
height and our visualization approach enables their interactive exploration and analysis.
The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an
application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation
data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by
eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain,
as well as the temporal evolution, for planning the placement and operation of structures.
Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical
properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used
for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the
largely unexplored Red Sea.

Index Terms—Ensemble Visualization, Ocean Visualization, Ocean Forecast, Risk Estimation.

F

1 INTRODUCTION

O CEAN forecasts are widely used for decision
making in a large range of areas. The oil and

gas industry relies on forecasts to safely operate off-
shore structures for oil exploration. Strong currents,
such as eddies, could severely affect the operations of
these platforms. Marine scientists acquire data using
autonomous underwater gliders whose paths can be
optimized when currents are known beforehand.

Nowadays, these forecasts do not come as single
simulation results, but as ensembles of simulations,
mapping uncertainty in the starting conditions, as
well as the simulation models themselves, to variation
in the ensemble. Developing efficient tools to visualize
and clearly disseminate such forecast outputs and
results is becoming a very important part of the
forecasting process. Such tools have to be conceived
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in a way that allows users to easily extract and
clearly identify the necessary information from large
ensembles and the associated statistics representing
the forecast and its uncertainties.

In earlier work [14] we present the first integrated
system for the visual exploration and analysis of these
kinds of forecasts. Our system handles time-series
of multivalued ensembles of sea surface height data,
represented by 2D heightfields. A set of statistical
properties is derived from the ensemble and can be
explored in multiple linked views, while the complete
ensemble is always available for detailed inspection
on demand. Our system enables domain experts to
efficiently analyze ocean forecasts, including their cor-
responding uncertainties. In this work we extend our
framework by a more advanced technique for eddy
classification, which is used in a second application
scenario, also presented in this paper. We present the
application of our framework in two settings. First for
planning the placement and operations of off-shore
structures, such as oil platforms in the Gulf of Mexico,
and second, new to this work, to aid planning the
paths of underwater gliders in the Red Sea.

1.1 Ocean Forecast Simulation
The development of a reliable ocean forecasting sys-
tem requires models capable of simulating ocean cir-
culation and an efficient assimilation scheme that,
given enough observations, provides accurate initial
conditions for forecasting. High-resolution 3D general
circulation ocean models are necessary to reproduce
complex mesoscale dynamics like in the Gulf of Mex-
ico [3]. However, such models cannot provide accu-
rate forecasts of mesoscale variability, such as eddy
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Fig. 1. Maps of the Areas of Interest. The Gulf of Mexico area is shown in (b). The simulation area for the Red
Sea dataset extends beyond the area illustrated in (c). However, for the use case that we present in Section 5.2,
only the area shown in (c) is of interest. Map data courtesy of GEBCO, IHO-IOC GEBCO, NGS, DeLorme.

shedding events, without data assimilation. A general
circulation ocean model is subject to several sources
of uncertainties, not only from the poorly known
inputs such as the initial state, and atmospheric and
lateral boundary conditions, but also from the use
of approximate parameterization schemes of sub-grid
physics and ocean mixing dynamics. Data assimila-
tion methods address this issue by constraining model
outputs with incoming data.

The important role of uncertainties is now increas-
ingly recognized in the ocean prediction community
for proper decision making and risk management.

New assimilation methods based on Bayesian filter-
ing theory have been recently developed by the ocean
and atmospheric communities for efficient propaga-
tion and quantification of uncertainties [7], [15], [16],
[17], [18], [33]. These methods, known as ensem-
ble Kalman filter methods, follow a Monte Carlo
approach to represent the uncertainties on a state
estimate by an ensemble of model states. These are
then integrated forward in time with the general
circulation ocean model to quantify uncertainties in
the forecast. The estimated forecast uncertainties are
then combined with the observation uncertainties to
assimilate the new incoming data using a Kalman
filter correction step [7], before a new forecast cycle
begins. Developing and implementing efficient en-
semble Kalman filters with state-of-the-art ocean and
atmospheric models is a very active area of research.

With the fast-growing high performance computing
resources, the implementation of ensemble Kalman
filters with large ensemble members is now practically
feasible using highly sophisticated general circulation
ocean models. When a filter’s ensemble is available, it
is customary to calculate various statistical measures
of the ensemble spread as indicators of the uncertain-
ties and of their evolution in space and time, which
are then used in decision making.

Hoteit et al. [15] developed an ensemble forecasting
system for the Gulf of Mexico circulation based on
the Massachusetts Institute of Technology General
Circulation Model (MITgcm) [25], and the Data As-

similation Research Testbed (DART) [18]. This system
is capable of assimilating various sets of satellite and
in-situ ocean observations. A similar system covering
the Red Sea was developed very recently. We use
these systems as real-world scenarios that illustrate
the new capabilities for analysis and exploration pro-
vided by our visualization approach. Figure 1 gives
an overview of the areas covered by the forecasting
systems.

1.2 Visualization Contributions

We present a GPU-based interactive visualization sys-
tem for the exploration and analysis of ensemble
heightfield data, with a focus on the specific require-
ments of ocean forecasts. Based on an efficient GPU
pipeline, we perform on-the-fly statistical analysis of
the ensemble data, allowing interactive parameter
space exploration. Usually these kinds of data are
visualized by means of parameterization, e.g. fitting
a Gaussian curve and storing only σ and µ. This
requires a priori knowledge of the data, i.e. the dis-
tribution of ensemble members must correspond to
a normal or at least unimodal distribution. One key
difference of our approach is that we do not assume
any such properties. The whole dataset, or at least
the distribution by means of a histogram, is available
throughout the pipeline. This allows us to carry out
visualization and computation such as iso-contour
extraction on the original data.

Based on our framework we present a novel work-
flow for planning the placement and operation of off-
shore structures such as oil rigs as well as for planning
the paths of autonomous sea vehicles, such as gliders
used for data acquisition in marine research. While
we focus on the visualization and analysis of ocean
forecast data, the presented framework could also be
used for the exploration of heightfield ensembles from
other fluid earth systems, such as weather forecasting
or climate simulation, but also completely unrelated
fields, such as for exploration of ensemble segmenta-
tion data [13].
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2 RELATED WORK
Uncertainty and ensemble visualization are widely
recognized as important topics in the field of visual-
ization, which has resulted in a large body of related
work in recent years. In the following overview, we
restrict ourselves to key publications in uncertainty
and ensemble visualization, as well as selected pub-
lications from other areas related to the techniques
presented in this paper.

Uncertainty Visualization. A good introduction
to uncertainty visualization is provided by Pang et
al. [30], who present a detailed classification of uncer-
tainty, as well as numerous visualization techniques.
Johnson and Sanderson [19] give a good overview
of uncertainty visualization techniques for 2D and
3D scientific visualization, including uncertainty in
surfaces. For a definition of the basic concepts of
uncertainty and another overview of visualization
techniques we refer to Griethe and Schumann [9].
Riveiro [40] provides an evaluation of different uncer-
tainty visualization techniques for information fusion.
Rhodes et al. [39] present the use of color and texture
to visualize uncertainty of iso-surfaces. Brown [1]
employs animation for the same task. Grigoryan and
Rheingans [10] present a combination of surface and
point-based rendering to visualize uncertainty in tu-
mor growth. Uncertainty information is provided by
rendering point clouds in areas of large uncertainty,
as opposed to crisp surfaces in more certain areas.

In recent work Pöthkow et al. [35], [36] as well as
Pfaffelmoser et al. [31] present techniques to extract
and visualize uncertainty in probabilistic iso-surfaces.
Pfaffelmoser and Westermann [32] describe a tech-
nique for the visualization of correlation structures in
uncertain 2D scalar fields. They use spatial clustering
based on the degree of dependency of a random
variable and its neighborhood.

Saad et al. [41] present a system which models and
visualizes uncertainty in segmentation data based on
a priori shape and appearance knowledge.

Ensemble Visualization. Pang, Kao and colleagues
present early work on visualization of ensemble
data [20], [21], [23], [24]. While the authors do not
use the term ensemble, these works deal with the
visualization of what they call spatial distribution
data, which they define as a collection of n values
for a single variable in m dimensions. These are
essentially ensemble data. The authors adapt stan-
dard visualization techniques to visualize these data
gathered from various sensors, e.g. satellite imaging
or multi-return Lidar. Frameworks for visualization
of ensemble data gained from weather simulations
include Ensemble-Vis by Potter et al. [38] and Noodles
by Sanyal et al. [44]. These papers describe fully
featured applications focused on the specific needs for
analyzing weather simulation data. They implement
multiple linked views to visualize a complete set
of multidimensional, multivariate and multivalued

ensembles. While these frameworks provide tools for
visualizing complete simulation ensembles including
multiple dimensions, to solve the problem presented
in this work we focus on heightfield ensemble data.

Matković et al. [26] present a framework for visual
analysis of families of surfaces by projecting the sur-
face data into lower-dimensional spaces. Piringer et
al. [34] describe a system for comparative analysis
of 2D function ensembles used in the development
process of powertrain systems. Their design focuses
on comparison of 2D functions at multiple levels of
detail. Healey and Snoeyink [11] present a similar ap-
proach for visualizing error in terrain representation.
There, the error, which can be introduced by sensors,
data processing or data representation, is modeled as
the difference between the active model and a given
ground truth.

Several published extensions of box plots have
inspired our time-series view. Hintze and Nelson [12]
introduce violin plots to give an indication of the
distribution using the sides of the box. Esty and
Banfield [6] combine box and percentile plots to add
the complete distribution to the plot while keeping
the simplicity of box plots. Potter et al. [37] combine
quartile, moment and density plots, based on the
histogram, to create summary plots. The density of
curves in 1D function plots can be visualized ef-
fectively using kernel density estimation [22]. Our
histogram view that shows the distribution of surfaces
embedded in 3D passing through each (x, y) position
is similar in spirit to such approaches, but for primi-
tives of one dimension higher.

3 SYSTEM DESIGN

This section describes our system for the visual anal-
ysis of multivalued sea surface height data gathered
from ocean forecasts. The foundation for the visual
exploration of the data comprises an extensive anal-
ysis of the data, which is described in Section 3.1.
We compute a set of standard statistics to indicate
variation at each grid point over the ensemble. For
both of the applications that we present in Section 5,
position and movement of eddies is of particular
interest. The position of these eddies can directly be
derived from the sea surface height. In addition to
the statical analysis we compute the eddy centers for
all ensemble members as well as the probability of
belonging to an eddy for each grid point.

For efficient exploration of the data we provide
multiple linked views (Section 3.2) as shown in Fig-
ure 2. Two spatial views, in 3D (Figure 2(a)) and
2D (Figure 2(b)) provide an overview of the spatial
relationships. The 2D view is also used for defining
the area of interest as well as defining potential plat-
form positions and glider paths. For a more detailed
inspection we provide a histogram view (Figure 2(c))
for a single position in time and space as well as a
time-series view (Figure 2(d)) which provides detailed
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Fig. 2. System Overview. Our system for exploration of ocean forecast ensembles consists of four main views.
The simulated ocean surface, or a derived version like the mean surface for a single point in time, can be shown
in 3D or 2D (a) and (b). The histogram view (c) shows the complete distribution of the ensemble at a selected
position, while the time-series view (d) shows the distribution and the resulting operational risk at a selected
position for multiple samples along time.

information for a user-defined set of positions in time
and space.

The analysis of the data is completely visualization-
driven. Statistical properties are computed on the fly
only when needed and for any user-defined subset of
the ensemble, to allow inspection of the parameter
space of the simulation. Using a completely GPU-
based computation and visualization pipeline as pre-
sented in Section 4 allows updates of these data at
interactive rates.

3.1 Analysis
Statistical Analysis. The goal of the statistical anal-

ysis is to provide information on the distribution of
the members within the ensemble. Therefore, for each
grid point, we compute a histogram of the sea surface
height at this position over all ensemble members.
Based on the histograms we compute a kernel density
estimation to approximate the continuous probability
density function (pdf). For visualization we assemble
the 1D pdfs in a 3D volume by placing each pdf at
the appropriate position in the grid.

For each grid point a number of statistical proper-
ties including range, mean, median, maximum mode,
standard deviation, variance, skewness and kurtosis
are computed, based on the 1D histograms. Similar
to the probability density functions these values are
then assembled in the original grid to form 2D scalar
fields, which are divided into two groups of different
semantics. While mean, median and maximum mode
are treated as additional, synthetic surfaces, the other
properties are added as meta information, for example
to color-code the surfaces.

Eddy Tracking. A very simple approach to auto-
matically identifying eddies based on the sea surface

height only is to look at the absolute height values.
Clockwise rotating eddies will push the water up
while counterclockwise rotation will lead to a drop
in sea surface height. Based on a threshold, each grid
point can be classified as belonging to an eddy or
not. In our application this threshold is user-defined
and can be modified at any time. The classification
as well as the resulting risk estimate (see below) for
the complete ensemble will be updated accordingly
on the fly.

Chaigneau et al. [2] present a more advanced tech-
nique for automatic eddy identification. Their method
is based on actual flows on the sea surface. Chaigneau
et al. use satellite measurements of the sea surface
height as input for their method. In absence of a
measured velocity field they derive the geostrophic
velocity field [8] (U(k, x, y, t), V (k, x, y, t)) from the
gradients of the sea surface height H(k, x, y, t) as:

U = − g

f
· ∂H
∂y

(1)

V =
g

f
· ∂H
∂x

, (2)

with g the gravitational acceleration and f the Corio-
lis parameter, k the ensemble member, x and y the
spatial dimensions and t the temporal dimension.
While Chaigneau et al. are constrained by the fact
that they only use the measured sea surface height
as input, any velocity field representing the surface
flow, such as results from the simulation, can be used
as input. When using the geostrophic velocity field,
the extracted streamlines match to iso-contours of H .

With given sea surface height and velocity fields the
method consists of four steps:
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1) Using a moving window approach, local ex-
trema in H are tagged as potential eddy centers.

2) Streamlines on the velocity field, around each
potential eddy center, are computed. Closed
streamlines, i.e. taking a full 360◦ turn, within
a limited area and with limited wiggling, indi-
cate the characteristic circular eddy currents. For
this we employ the winding angle algorithm as
presented by Sadarjoen et al. [42], [43].

3) Extrema for which no closed streamline can be
found, such as extrema close to the boundary of
the dataset, are dropped from the list of potential
eddy centers. The remaining candidates will be
considered eddy centers.

4) Closed streamlines for each eddy center are clus-
tered. The outermost streamline for each eddy
center identifies the boundary of the eddy.

Flood-filling the outermost streamlines classifies each
grid point inside as corresponding to an eddy.

Risk Estimate. Both eddy tracking methods in-
troduced above result in a binary map M(k, x, y, t)
for each member k of the ensemble that is true if
M(k, x, y, t) is classified as an eddy and false other-
wise. Assuming that all realizations for one sample
in time (assimilation cycle) t are equally probable,
we define the eddy probability Pe(x, y, t) or risk for
each position in space and time as the fraction of the
members in the ensemble where the bit is set in these
maps for this position:

Pe(x, y, t) =
1

n
·

n∑
k=1

{
1 if M(k, x, y, t) is true
0 else,

(3)

where n is the total number of realizations for a single
assimilation cycle.

This is especially important for the oil rig-operation
application we present in Section 5.1. The strong cur-
rents of eddies pose large risks to deep sea oil explo-
ration. Hence we also call this property risk estimate.
In addition to the uncertainty information that can
be gathered for each position, the risk estimate map
also provides an idea of the positional uncertainty.
This can clearly be seen in Figure 3. Eddies that are at
similar positions and of similar size over all members
at a single point in time have sharp boundaries (a),
while eddies with a lot of variation will show up in
the visualization with fuzzy boundaries (b).

3.2 Visual Forecast Exploration
Our system targets the interpretation of forecasts for
different applications. Since the different applications
have different requirements, we provide a set of four
main views, which are used in different combinations
depending on the application scenario. Figure 2 shows
our application with the main views plus a unified
settings panel. The views are two spatial views show-
ing the surface data themselves, one in 3D (a), the
other one in 2D (b), a linked histogram view (c) as
well as a time-series view (d).

a b

Fig. 3. Spatial Uncertainty can be seen using the risk
estimate. The two figures show the risk for the same
region but different assimilation cycles. In (a) the eddy
can be classified with little uncertainty, indicated by
the sharp features. In (b) the fuzzy boundary indicates
larger spatial uncertainty.

2D View. The simple 2D view shown in Figure 2(b)
is a common tool for visualizing heightfield data and
familiar to domain scientists.

The main function of the view is to provide a
first overview of the data. Therefore it provides two
ways to visualize 2D scalar fields. The scalar field can
be visualized directly by pseudo coloring the scalar
values, or indirectly by extracting iso-contours from
the scalar field which can then be rendered as curves
in this view. Typically the topography of the mean sea
surface height for a single point in time is rendered by
extracting iso-contours for several interesting height
values. Uncertainty information can be provided for
example by rendering the variance scalar field in the
background. In general the view is completely user
configurable. Any of the scalar fields, including any
of the original heightfields from the ensemble, can be
rendered directly or by means of iso-contouring.

In addition to presenting information to the user,
the 2D view is also used for interaction. We provide
a simple painting interface in this view to allow the
definition of an area of interest. The user can select
rectangles or directly paint interesting regions on the
map, allowing arbitrary free-form selections, which
will then be highlighted in both the 2D and 3D views.
Furthermore the view enables the creation and editing
of points and paths of interest. This allows probing
positions, which could be potential positions for plac-
ing an off-shore structure (see Section 5.1) or defining
and adjusting the path for a glider (Section 5.2).

3D View. The 3D view (Figure 2(a)) provides the
same features for visualization as the 2D view plus
several additional tools for a more detailed spatial
and temporal inspection. Typically, in the 3D view the
height values of the displayed surface are mapped
to the third dimension, freeing pseudo-coloring and
iso-contours for additional information. An additional
benefit of the 3D view is that it is possible to use
volume rendering for showing details of the distribu-
tion of the ensemble. Similar to approaches presented
by Pöthkow et al. [35], [36], as well as Pfaffelmoser
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Fig. 4. 3D Probability Density Function at a user-
selected position. The surface is color-mapped with the
variance. The large spread in areas of high variance is
clearly visible in the volume rendering.

et al. [31], we depict the actual distribution of the
ensemble as a volume around the surface. Instead of
using a parametric representation of the data based
on mean and variance, we allow rendering the full
probability density function, of the distribution, as
presented in Section 3.1, to allow detailed inspection
of the actual data. However, since at this point the
user usually has picked a set of points of interest, to
avoid unnecessary occlusion, we do not render the
complete volume, but a small subset of adjustable
size, which essentially works like a volumetric cursor
(see Figure 4). The user can simply probe the data by
hovering with the mouse over a position of interest,
and the probability density volume is then rendered
around the picked position.

Histogram View. Another way to inspect the
distribution in detail is the histogram view shown
in Figure 2(c). This view shows the histogram of all
height values of the ensemble as well as the prob-
ability density function for a selected (x, y)-position.
To provide spatial context the histogram is positioned
according to the actual height values and the bin
corresponding to the surface that is currently shown
in the 3D view is highlighted. The histogram is laid
out with the sea surface height on the y-axis and the
number of surfaces on the x-axis. This layout deviates
from the conventional layout for a histogram where
usually the bins are mapped to the horizontal axis,
but in our case the sea surface height intuitively maps
to the vertical axis. Similar to the volumetric repre-
sentation in the 3D view, the position is defined by
picking directly in any of the spatial views. When the
user moves the mouse over the surface, the histogram
view is updated on the fly to show the histogram at
the current mouse position.

Time-Series View. The time-series view (Fig-
ure 2(d)) provides detailed information on single po-
sitions over time, by means of a glyph, specifically de-
signed to convey the most important information for
the applications presented in Section 5. The glyphs are
positioned side by side, along the x-axis of the view.
In general, each of these glyphs can show data from
any desired point in time and space. We will show in
section 5 how this can be used to provide different
semantics for this view depending on the application.
For planning the operations of an oil platform at a
fixed position the x,y coordinate is fixed, while each
glyph presents the information for a sample along the
timeline. For planning the glider paths the path is
sampled along the time-series, providing distinctive
x,y-coordinates for each point in time.

Figure 5 shows a detailed description of the glyph,
which is inspired by the violin plots, introduced by
Hintze and Nelson [12]. While the shape of the violin
plot is symmetric, the left and the right side of our
glyph can be defined by two different properties. In
the example in Figure 5, the left side shows the pdf for
the distance to the closest eddy center from the posi-
tion of the glyph, while the right side shows the pdf of
the sea surface height as described in Section 3.1. For
the different applications the glyph can be configured
by the user, for example for comparing two positions
for placement the pdfs of the two positions can be
used on the two sides of the glyph. However, the most
important application is displaying sea surface height
distributions. Therefore we decided to use the same
vertical layout as described above for the histogram
view. The glyph is positioned on the y-axis according
to the actual height values, making the position not
only comparable to other glyphs at different positions
in the view, but also to the user-defined threshold for

probability

se
a 

lev
el

critical fraction
based on
abs height

critical
sea level

pdf
mean

sea level

Risk
100%

80%
60%
40%
20%

0%

probability

di
st

an
ce

 to
 c

lo
se

st
 e

dd
y 

ce
nt

er

mean
distance

Fig. 5. The Time-Series View Glyph in detail. Here
the left side of the glyph shows the pdf of the distance
to the closest eddy center for all members of the
ensemble, while the right side shows the pdf of the
sea surface height. The mean values are indicated by
a bar at the appropriate position. Colorcoding is used
to color the glyph according to the risk at the selected
position. The sides of the glyph can be configured by
the user, for example to show the sea surface height at
two different positions, one on each side of the glyph.
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Fig. 6. Pipeline Overview. The pipeline is divided into two major blocks: The statistical analysis part at the top,
and the rendering part shown at the bottom. Both parts are entirely GPU-based, and all data (middle row) are
shared by both parts in GPU memory.

the simple, absolute height-based eddy classification,
indicated by the horizontal red line. The mean values
of both properties are indicated by a black bar on
their respective sides of the glyph. Additionally, the
glyphs are pseudo-colored according to one of the two
versions of the risk estimates described in Section 3.1.
Information on the uncertainty of the data can imme-
diately be retrieved from the shape of the glyph: A
large spread or variation in the surface positions over
the ensemble, indicating larger uncertainty, results in
a large glyph, while little uncertainty results in less
variation and more compact glyphs.

4 GPU-BASED PIPELINE

To allow interactive updates of the statistics, we have
implemented a completely GPU-based analysis and
visualization pipeline presented in Section 4.1. A de-
tailed performance analysis is presented in Section 4.2.

4.1 Implementation

Our GPU-based analysis and visualization pipeline
is illustrated in Figure 6. In the remainder of this
section, numbers in brackets refer to this figure. The
pipeline is divided into two main parts: The statistical
analysis and iso-surface extraction is carried out using
CUDA, while the visualization is based on OpenGL
and GLSL shaders. All data are shared between the
two parts of the pipeline, so that after the initial
upload of the ensemble onto the GPU no expensive
bus transfer is necessary. Since usually only a small
part of the ensemble is required by the visualization,
a streaming approach would be possible for datasets
that are larger than GPU memory, but we currently
assume that the dataset fits into GPU memory.

Input. The input (1) to our system is a set
of heightfields. These can be part of a simulation
ensemble, e.g. from ocean or weather forecasts, a time-
series of some sort, or the results of a parameter-
ized segmentation [13]. Even though we focus on
heightfields in this work, the concepts can also be

applied to surfaces in n dimensions as long as the
correspondences between all surfaces in the dataset
are known for every nD-datapoint. In our framework,
we assume the 2D spatial (x, y)-coordinate to be the
correspondence between the surfaces.

Data Representation. Before computation of statis-
tics or visualization, the ensemble is converted into
a 3D texture (2) and loaded onto the GPU. Every
heightfield of the ensemble will be represented by one
slice in this texture. Additionally, space for the mean,
median and maximum mode heightfield will also be
reserved in this texture. The surfaces are indexed
using the original parametrization. If there is only a
single parameter, for example the temporal samples in
a time series, the surface ID corresponds to the texture
index. For higher-dimensional parameter spaces, e.g.
ensemble ID plus time, the linear texture index is
computed from the original parameters. This allows
the user to define subranges for each parameter sepa-
rately, for example to examine the complete ensemble
at a single point in time.

Statistical Analysis. The first step in the statis-
tical analysis is the creation of the 3D histogram (3).
Changes in the parameter range trigger an update of
the 3D histogram and subsequently of the representa-
tive surface and property texture. Since each ensemble
member provides exactly one entry to the histogram
per (x, y)-position, rather than using a thread for each
member, we use one thread per (x, y)-position. Each
thread then loops over all selected surfaces and inserts
the corresponding height values into the histogram.
This way, write conflicts can be avoided and no critical
sections or atomic operations are needed. The kernels
for the derived properties are set up in a similar
fashion. The desired statistical property is computed
by one thread per (x, y)-position. The main difference
to the histogram computation is that this results in
a single scalar per thread, all of which are then
assembled into a 2D texture. While mean, median and
maximum mode (4) are attached to the 3D heightfield
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texture to be used as representative surfaces, the other
properties (5) are copied into a 2D texture available
to the visualization pipeline for texturing the surface.
Exploiting the parallelism of the GPU and eliminating
costly bus transfers between CPU and GPU allows
interactive modification of the parameter range even
for ensembles containing several hundred surfaces.
Section 4.2 provides a detailed performance analysis.

Iso Contouring. We have implemented marching
squares using CUDA, based on the marching cubes
example from the CUDA SDK [28]. We keep the initial
geometric representation of the contours, for example
for use in the 2D view, but for overlaying the contours
onto the 3D surfaces we render the contours into an
offscreen buffer (6), which is then used for texturing.

Rendering. The rendering pipeline takes advan-
tage of the fact that all ensemble data are already
stored in GPU memory, which facilitates efficient sur-
face rendering. Instead of creating new surface geom-
etry every time a different surface of the ensemble is
rendered, a single generic vertex buffer of fixed size
is created. This buffer covers the entire (x, y)-domain,
but does not contain any height information. The z-
value of each vertex is set later in the vertex shader.
Before transforming the vertex coordinates into view
space, the object space (x, y)-coordinates of the vertex
in combination with the ID of the active surface are
used to look up the z-value of the current vertex in
the ensemble texture. At this point, the desired surface
geometry is available. In order to be able to visualize
the results of the statistical analysis, the object space
coordinates are attached to each vertex as texture
coordinates (x and y are sufficient). In the fragment
shader, this information can then be used to look up
the active statistical property in the 2D texture. This
texture contains the raw information from the statisti-
cal analysis, which is then converted to the fragment
color by a look up in a 1D color map. We provide
a selection of several continuous, diverging cool-to-
warm color maps, as presented by Moreland [27], but
also allow the creation of custom color maps. These
color maps minimally interfere with shading, which is
very important in this case, as shading is an important
feature to judge the shape of a surface. During testing
we realized that using the continuous version made
it very hard to relate an actual value to a color in
the rendering so we decided to optionally provide a
discrete version with ten steps. After the surface ge-
ometry has been rendered, a surrounding volume, for
example the 3D probability density function, can be
rendered as well. This is done in a second rendering
pass in order to guarantee correct visibility [45].

Interaction. With the described pipeline in place,
a number of features can be implemented very easily
and efficiently. If desired, the user can choose to
render any surface from the ensemble. This requires
no data transfer to or from the GPU, except for the ID
of the surface in the ensemble to render. In addition,

it is possible to automatically animate all surfaces in a
predefined range. In the presented application this can
be useful in two ways; As shown by Brown [1] anima-
tion is a powerful tool for visualizing uncertainty. The
user can choose to animate through all members of a
single sample of the time series to get an impression of
the surface distribution. Secondly animating the mean
surfaces over the time domain can show the behavior
of the eddies.

The described visualization techniques can give a
very good impression of the quantitative variation in
the data. Detailed information on the surface distri-
bution can be gained by animating through or manu-
ally selecting individual surfaces from the ensemble.
However, it is hard to get a good impression of the
complete distribution this way. We therefore provide
the possibility to render a cutout of adjustable size
of the pdf of the complete distribution as a volume
on top of the surface geometry (Figure 4) or show
histogram and pdf for a selected position in a separate
view (Figure 2(c)). The position to investigate can be
picked directly in the 3D view. All information that
is required for picking is already available in our
rendering pipeline: We use the same vertex shader
as described before for rendering the surface into an
off-screen buffer of the same size as the frame buffer.
Instead of using the object space coordinates to look
up the scalar values in the fragment shader, we use
the coordinates directly as the vertex color. This way,
we can look up the current mouse position directly
in the downloaded off-screen buffer. With the (x, y)-
components of the resulting volume position, we can
then directly look up the histogram and probability
density distribution for this position. To facilitate easy
comparison, we color the bin corresponding to the
current representative surface differently than the re-
maining bins.

4.2 Performance

The performance of the statistical analysis is crucial
for interactive exploration of the parameter space. We
have used the dataset of the Gulf of Mexico, described
in Section 5 for a performance analysis. The dataset
consists of a total of 500 surfaces spread over ten
sampled time steps. Since usually one time step is
investigated at a time, we compare performance for
a single forecast time step, consisting of 50 surfaces,
as well as the complete dataset. Table 1 shows the
resulting computation times.

The computations were performed using an
NVIDIA GeForce GTX 580 with 1.5GB of graphics
memory. The timings were averaged over 1000 kernel
executions. As all data stays on the GPU, no bus
transfer has to be considered. For comparison, we
also show computation times of a single time step
on the CPU. The computations were carried out on
a workstation with two six-core Xeons (12 physical
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TABLE 1
Computation times for all properties. All times are given in milliseconds. The first column shows ID and
name of the property. The columns titled w/o and w dep show the computation time for a property with and

without dependencies. The last two columns show the speedup from CPU to GPU.

50 Surfaces GPU 500 Surfaces GPU 50 Surfaces CPU Speedup
Property w/o w dep w/o w dep w/o w dep w/o w dep

1 Histogram 3.23 3.23 38.56 38.56 19.24 19.24 6.0x 6.0x
2 PDF1 12.93 16.16 12.78 51.34 45.70 64.94 3.5x 4.0x
3 Range 0.71 0.71 11.09 11.09 3.45 3.45 4.9x 4.9x
4 Mean 0.71 0.71 10.89 10.89 3.48 3.48 4.9x 4.9x
5 Median1 0.70 3.93 0.70 39.26 8.78 28.02 12.5x 7.1x
6 Mode1 1.40 4.63 1.41 39.97 4.65 23.89 3.3x 5.2x
7 Variance4 0.72 1.43 10.87 21.76 3.85 7.33 5.3x 5.1x
8 Std Dev4,7 0.02 1.45 0.02 32.78 0.14 7.47 7.0x 5.2x
9 Skewness1,4,6,7,8 0.05 6.13 0.05 72.80 0.16 31.42 3.2x 5.1x
10 Kurtosis4,7 0.74 2.17 10.76 32.52 4.05 11.38 5.5x 5.2x
11 Risk Estimate 1.70 1.70 21.00 21.00 27.93 27.93 16.4x 16.4x
nids of additional properties needed for computation.

cores plus hyper threading) clocked at 3.33GHz and
48GB of main memory. The CPU computations were
parallelized using OpenMP, utilizing 24 threads.

In general, it can be seen in Table 1 that using
the GPU even for 500 surfaces, the slowest update
including skewness and all dependencies plus the
probability density function (which needs to be com-
puted for the histogram and time-series views) still
allows for interactive update rates. Compared to the
CPU version, we achieved a speedup of roughly 5×
for all tasks when considering the dependencies.

The histogram, range, mean, variance, kurtosis and
the risk estimate are calculated directly from the
ensemble and as such the complexity relies solely
on the number of surfaces and valid data points
per surface. We would expect the computation time
for these values to scale linearly with the number
of surfaces/valid data points, which seems to be in
line with the measured numbers. For larger datasets,
however, it would make sense to compute range,
mean, variance, kurtosis and the risk estimate using
the histogram. This would result in constant time,
only depending on the size of the histogram. For the
datasets here, however, the histogram computation is
the limiting factor. The probability density function,
median and mode are looked up using the histogram,
and therefore there is no difference between the small
and the large data set. Standard deviation and skew-
ness are implemented as simple combinations of other
surface properties, and thus computation times are
also independent of the number of surfaces. With
the dependencies precomputed, the computation of
both properties is trivial, which results in very short
computation times.

5 APPLICATION SCENARIOS

This section presents two novel visual workflows for
planning the placement as well as the operations of
off-shore structures (Section 5.1), and for planning
underwater glider paths for efficient data acquisi-
tion (Section 5.2), respectively. We have designed
our framework with these real-world scenarios in
mind. During this process, we have worked closely
with our domain expert partners, who are also co-
authors of this paper, to specifically address their
needs. Although we have not yet performed a formal
evaluation, we can say that the domain experts are
very satisfied with the capabilities provided by our
framework, and that they are eager to integrate it
with their daily workflow. The close integration of
views and tools specifically designed for the tasks
at hand, as well as the GPU-based computation and
visualization pipeline, considerably speed up the vi-
sual analysis process. Our collaborators think that
this is a big step forward over the usual approach
of combining the actual computation with plotting
the results in MATLAB. The biggest advantage of
our framework over this more limited approach is
provided by the time-series view in our framework.
Even though this is a kind of visualization that our
partners have not used in their standard workflow
until now, they were immediately comfortable with
using it in our framework. They thought that the
time-series view helps tremendously when judging
the forecast for a predefined position over several time
samples.

5.1 Off-Shore Oil Operations in the Gulf of Mexico
Oil exploration in the deep Gulf of Mexico is vulner-
able to hazards due to strong currents at the fronts
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of highly non-linear warm-core eddies [51]. The dy-
namics in the Gulf of Mexico are dominated by the
powerful northward Yucatan Current flowing into a
semi-enclosed basin. This current forms a loop that
exits through the Florida Straits and merges with the
Gulf Stream. At irregular intervals, the loop current
sheds large eddies that propagate westward across
the Gulf of Mexico. This eddy shedding involves a
rapid growth of non-linear instabilities [4], and the
occasional eddy detachment and reattachment make
it very difficult to clearly define, identify, monitor, and
forecast an eddy shedding event [3], [15].

The predictability of these eddy shedding events
poses a major challenge for the oil and gas indus-
try operating in the Gulf. The presence of these
strong currents potentially causes serious problems
and safety concerns for the rig operators. Millions of
dollars are lost every year due to drilling downtime
caused by these powerful currents. As oil production
moves further into deeper waters, the costs related to
strong current hazards are increasing accordingly, and
accurate 3D forecasts of currents are needed. These
can help rig operators to avoid some of these losses
through better planning.

We illustrate two different scenarios, planning the
placement and planning operations of an off-shore
platform, with a real-world forecast dataset of the
Gulf of Mexico. The dataset covers the Gulf of Mexico
basin between 8.5◦ N and 31◦ N, and 72.5◦ W and
98◦ W on a 1/10◦ × 1/10◦ grid (225× 255 samples of
varying metrical distance, between 9.5km and 11km,
due to the spherical grid) with 40 vertical layers.
Forecasting experiments were performed over a six-
month period in 1999 between May and October
during which a strong loop current event occurred
(Eddy “Juggernaut”) [29]. The assimilation cycle was
two weeks, resulting in ten temporal samples, each
consisting of 50 ensemble members.

Planning Phase. While the accessibility of an
existing reservoir is the key factor when planning
an oil platform, ocean forecasts can provide valuable
additional information. Modern drilling techniques to
some extent allow flexible paths and thus considerable
flexibility for the actual placement of a platform.
However, the complexity of the path has implications
on the cost of drilling. On the other hand, slight
changes of the position might move a platform from
an area that is strongly affected by eddy shedding,
which leads to long downtimes, to a less affected area,
overall resulting in more efficient operations.

Planning the placement of an off-shore structure
requires a complete overview of the ensemble in the
spatial domain, but also of all available time steps.
Figure 7 outlines all necessary steps. First, the user de-
fines the area of interest (defined by factors not avail-
able in the ocean forecast, like reservoir reachability)
in the 2D view (Figure 7(a)) for example by painting
directly on the map. In Figure 7(b), the sea level of the

a b

d

Fig. 7. Spatial Exploration for placement planning
consists of four main steps: Definition of the area of
interest based for example on reservoir reachability
(a), general overview (b), time-series analysis (c) and
detailed analysis for verification (d).
Please use Adobe Reader ≥ 9 to enable animations.

mean surface for a single sample in time is mapped to
the third dimension. The standard deviation is used
for pseudo-coloring in the 3D view. By animating
over all assimilation cycles, the user can now get an
overview of the mean sea level at the selected area
of interest, as well as the corresponding uncertainties.
Besides the 3D view, animation can also be used in the
2D view, showing the sea level using iso-contours and
pseudo-coloring (inset). While the animation is very
effective to give a first impression of the changing
sea level, it is challenging to derive qualitative results.
Therefore, in the next step, the user can look at iso-
contours from the mean surfaces, or risk estimates
of multiple assimilation cycles in a single view. The
contour for a single selected sea level and maximum
allowed risk is extracted for all cycles and rendered on
the mean surface. The selected sea level, as well as the
maximum risk, can be changed on the fly (compare
the animation in Figure 7(c)). Starting with a low sea
level and zero risk, the user can gradually approach a
suitable compromise of available positions, critical sea
surface height and risk, to narrow down the area of
interest to a few points. Once a compromise is found,
the ensemble distribution can be probed interactively
at the interesting positions, to verify the results using
the histogram view (Figure 7(d)). At this point, the
area for placement is narrowed down significantly.
Positions for potential placement can now be defined
and edited on the map in the 2D view or by entering
coordinates directly. The operational phase for these
samples can then be simulated identically to the actual
operational analysis (see below).












1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TVCG.2014.2307892, IEEE Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. #, MONTH 2014 11

Fig. 8. Time-Series Comparison for two positions
(indicated by the markers in the insets) that are in close
proximity. The upper left position is mapped to the left
side of the glyphs, the lower right position to the right
side. The left side of the glyphs shows a position which
exhibits very little risk only for the first and last sample
of the time-series. Moving the position slightly results
in several time steps which would definitely require a
shutdown of operations (right side of the glyphs).

Operational Phase. Most of the ensemble analysis
for planning operations and unavoidable downtimes
is carried out in the time-series view shown in Fig-
ure 2(d). For a detailed explanation of the glyph
used in the view, see Section 3.2. For planning the
operations, the view shows the complete available
time-series at a single user-defined spatial position,
corresponding to an actual, or potential oil rig. The
most important information here is the risk estimate
described in Section 3.1. Each glyph is color coded ac-
cording to the risk at the corresponding point in time.
We provide a set of standard color maps for coloring
the glyphs. The color map is also freely customizable,
most importantly to adapt to the acceptable risk. A
good color map should highlight three cases based
on the risk estimate: Points in time which are safe for
operation with a high certainty, time steps where the
rig needs to be shut down with large certainty, and
finally uncertain times. We found the green to yellow
to red diverging color map, as used in Figure 2(d)
to be a good fit, with the green and red mapping to
the percentages which indicate safe operations and a
high risk, respectively, and the yellow to percentages
indicating the need for additional inspection.

The actual operation planning is a recurring process
with only a few future assimilation cycles available
at a time. Assuming a color map as described, after
loading the data the user can immediately identify
safe and unsafe points in time from the color of
the corresponding glyphs. Only uncertain points in
time need further investigation. The main factor to
consider for these cases is the spread or uncertainty
of the distribution. A compact glyph corresponds
to a distribution with little uncertainty. Here, the
risk estimate can immediately be used for making
a decision to shut down the rig. A large glyph in
general indicates large uncertainty. Here, the user
must carefully weigh several properties: Are ensemble
members in the critical range close to the critical sea

level or far above, is the distribution skewed to either
side, etc. This information can be derived from the
glyph or the user can inspect the raw results from the
statistical analysis to make a final decision.

Figure 8 shows a comparison for two positions that
are in close proximity, selected for potential placement
at the boundary of the eddy shedding area. The spa-
tial distance is less than 30km (compare the positional
markers in the insets of Figure 8). While the position
mapped to the left side of the glyphs would allow
minimal downtimes (only two of the samples of the
time-series exhibit any risk, which is also very low)
the position mapped to the right side of the glyphs
exhibits a very different result. For this position, six
out of the ten samples show a sea surface height that
will certainly be above the critical level. In addition
even the first two samples, which overall are less
risky, expose a large amount of uncertainty. Using this
comparison one can immediately see that the position
mapped to the left side of the glyphs will allow much
more efficient operations.

5.2 Planning Glider Paths in the Red Sea
The Red Sea has recently attracted attention from
several scientific communities, for its unique physical
and biological variability. It is characterized by high
temperature and salinity due to its location, sur-
rounded by hot deserts, resulting in high evaporation
and negligible precipitation, as well as its isolation
from the worlds oceans. Besides the negligible Suez
Canal in the north, the only connection to other large
bodies of water is through the strait of Bab el Mandeb,
a narrow and shallow channel.

The Red Sea is bordered by high mountain ranges
that constrain the winds to be closely aligned along
the axis of the basin except at a few locations where
gaps in the mountains exist. The horizontal circu-
lation in the Red Sea consists of multiple eddies,
driven by these strong winds. These eddies strongly
influence the exchange of biological organisms and
also transport heat and other physical properties.
Nowadays, so-called gliders, autonomous underwater
vehicles (see Figure 9), are used to record the physical,
chemical and biological properties of the eddies, such
as temperature, salinity or chlorophyll content.

We illustrate the use of our system for the scenario
of planning glider paths using an ensemble simulation
dataset for the Red Sea. The dataset covers the Red
Sea and extends towards the east through the Gulf of

Fig. 9. Slocum Glider as used by the University of
Southern California (courtesy of Smith et al. [47]).
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Fig. 10. Detailed Glider Path Analysis. The video shows the editing of the path of a glider. When a control
point is moved (2D view, right) the sample positions for the time series along the resulting path are recomputed,
triggering updates in the time-series view (left) for detailed analysis.
Please use Adobe Reader ≥ 9 to enable the video.

Aden to the Arabian Sea and the Persian Gulf. The
exact covered area extends from 9◦ N to 30◦ N, and
32◦ E to 77◦ E on a 1/10◦ × 1/10◦ (corresponding
to 9.6km to 11km) grid with 50 vertical layers. The
months of January to March 2004 were simulated and
the assimilation cycle was three days, resulting in a
dataset of 30 sampled time steps, with of 50 members,
each consisting of 450× 210 samples.

Underwater gliders [5], [46], [49] are autonomous
sea vehicles consuming very little energy. They move
without a propeller, only by means of changing their
volume, for example by de- or inflating an external
oil bladder, and shifting of weight. Recently Smith
et al. [48] proposed improving glider operations by
the use of an ocean model and Kalman filtering. The
reasons to use ocean forecasts when planning the
paths of a glider are diverse. Naturally, the positions
of moving eddies are important when one wants
to sample data inside these eddies. In addition to
this, the energy consumption of the gliders can be
judged more precisely when currents along the path
are known. Strong currents can also be used as an
accelerator, to minimize energy consumption or move
the gliders to a desired position more quickly.

In our system, planning the path of a glider is sim-
ilar to planning the position of an off-shore structure,
as described in Section 5.1. First, the user gathers an
overview of the eddy positions and their movements
over time, using any of the spatial views. Again, the
exploration starts with the definition of an area of
interest. After that, the user would look at the eddy
probability map (or risk estimate), as well as the eddy
centers in the 2D and 3D spatial views. In combination
with the visualization of the eddy centers, animat-
ing over the eddy probability maps of the different
samples of the time-series one can easily identify
moving and more stationary eddies and plan the path
accordingly. The path itself is then defined by placing
waypoints in the 2D view. By assigning a velocity

to the glider, the positions along the resulting path,
corresponding to the available samples of the time-
series of the forecast, can be computed. Waypoints
can be edited, simply by dragging them within the 2D
view. The available positions will automatically be re-
computed on the fly. The positions along the path, for
which forecast data is available are highlighted in the
spatial views, with extra emphasis on the point in time
which is currently active in the view. All available
positions can be shown in the time-series view. When
planning a path, the view behaves differently com-
pared to planning a single fixed position, as described
above. While the x-axis still corresponds to the time,
each glyph does not only reflect a point in time, but
is also created from the data at the grid point along
the path computed for this point in time. Figure 10
shows typical adjustments to a path. The user drags
one of the waypoints, resulting in variations of the
length of the adjacent path segments and thus updates
of the positions of the available samples of the time-
series along the path. The time-series view updates
immediately, showing the detailed information for
each of the positions along the path over time.

6 CONCLUSION
In this work we have presented an interactive, inte-
grated system for the visualization, exploration and
analysis of heightfield ensemble data. The core of
our framework, which consists of statistical analysis
and rendering, is implemented in an efficient GPU-
based pipeline. We have illustrated the utility of our
framework for two real-world applications based on
ocean forecasting. We developed the system in close
collaboration with domain expert partners, who now
use it on a regular basis. For the future we would like
to conduct a formal user study.

In the current state our framework requires the
whole dataset to be available in GPU-memory at any
point in the pipeline. Even though GPU-memory is
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getting larger and larger, this is an obvious prob-
lem when scaling to very large data. However, the
statistics can all be computed based on the histogram.
For the future we plan to implement a streaming
approach for computing the histogram, i.e. loading
the data into GPU memory in slabs and computing
the histogram slab by slab. Since the histogram is
of constant size, this would eliminate the problem of
computing statistics for very large data.

We would also like to explore the possibilities to
deploy our framework in a broader set of application
scenarios, different from ocean forecasting. While vi-
sualization of weather and climate forecasts are obvi-
ous targets, completely different areas like analysis of
time series of geospatial measurements [50] might also
profit from this kind of analysis. In previous work [13]
we present the application of our framework for
interpretation of seismic tomography data.
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[13] T. Höllt, G. Chen, C. D. Hansen, and M. Hadwiger. Extraction
and visual analysis of seismic horizon ensembles. Eurographics
2013 Short Papers, pages 69–72, 2013.
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