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1.1 Abstract

In recent years, software component technology has been a successful methodol-
ogy for large-scale commercial software development. Component technology com-
bines a set of frequently used functions in an easily reusable form and makes the
implementation transparent to the users or other components. Developers create
new software applications by connecting together a group of components. Com-
ponent technology is becoming increasingly popular for large-scale scientific com-
puting for helping to tame the software complexity required in coupling multiple
disciplines, multiple scales, and /or multiple physical phenomena. In the chapter, we
discuss the successes achieved through the SCIRun Problem Solving Environment
(PSE), and the biomedically oriented BioPSE. Notwithstanding these successes,
component software systems for scientific computing provide a limited form of in-
teroperability, typically working only with other components that employ the same
underlying component model. As such, we propose a next generation concept of
meta-components, where software components can be manipulated in a more ab-
stract manner, providing a plug-in architecture for component models, and bridges
between them, allowing for interoperability between different component models.
These abstract, meta-components are manipulated and managed by a new software
framework, called SCIRun2, while concrete, standard component models perform
the actual work. This facility allows components implemented with disparate com-
ponent models to be orchestrated together. As an example of a multi-component
system, we have used this system to connect components from SCIRun, the Insight
Toolkit (ITK), the Visualization Toolkit (Vtk), and the DOE Common Component
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Architecture (CCA) into a single application.

1.2 Introduction

In recent years, component technology has been a successful methodology for large-
scale commercial software development. Component technology combines a set of
frequently used functions in a component and makes the implementation transpar-
ent to users. Software application developers typically connect a group of compo-
nents from a component repository, connecting them to create a single application.

SCIRun' is a scientific Problem Solving Environment (PSE) that allows the in-
teractive construction and steering of large-scale scientific computations [21, 20, 22,
12, 23, 26, 11]. A scientific application is constructed by connecting computational,
modeling, and visualization elements [9]. This application may contain several
computational elements as well as several visualization elements, all of which work
together in orchestrating a solution to a scientific problem. Geometric inputs and
computational parameters may be changed interactively, and the results of these
changes provide immediate feedback to the investigator.

Problem solving environments, such as SCIRun, often employ component tech-
nology to bring a variety of computational tools to an engineer or scientist for solving
a computational problem. In this scenario, the tools should be readily available and
simple to combine to create an application. However, these PSEs typically use a
single component model (such as Java Beans, Microsoft COM, CORBA, or CCA),
or employ one of their own design. As a result, components designed for one PSE
cannot be easily reused in another PSE or in a standalone program. Software devel-
opers must buy in to a particular component model and produce components for one
particular system. Users must typically select a single system or face the challenges
of manually managing the data transfer between multiple (usually) incompatible
systems.

SCIRun2 [27], currently under development, addresses these shortcomings
through a meta-component model, allowing support for disparate component-based
systems to be incorporated into a single environment and managed through a com-
mon user-centric visual interface.

In this chapter, Section 1.3 discusses the SCIRun and BioPSE problem solving
environments. Other scientific computing component models are discussed in Sec-
tion 1.4. The remainder of the chapter discusses the design of SCIRun2, including
a discussion of meta-components 1.5, support for distributed computing 1.6, and
parallel components 1.7. We present conclusions and future work in Section 1.8.

1.3 SCIRun and BioPSE

SCIRun is a scientific PSE that allows the interactive construction and steering
of large-scale scientific computations [21, 20, 22, 12, 23]. A scientific application
is constructed by connecting computational elements (modules) to form a program

Pronounced “ski-run.” SCIRun derives its name from the Scientific Computing and Imaging
(SCI) Institute at the University of Utah.
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(network), as shown in Figure 1.1. The program may contain several computational
elements as well as several visualization elements, all of which work together in or-
chestrating a solution to a scientific problem. Geometric inputs and computational
parameters may be changed interactively, and the results of these changes provide
immediate feedback to the investigator. SCIRun is designed to facilitate large-scale
scientific computation and visualization on a wide range of architectures from the
desktop to large supercomputers.
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Figure 1.1. The SCIRun PSE, illustrating a 3D finite element simulation
of an implantable cardiac defibrillator.

BioPSE [11] is a PSE based on SCIRun that is targeted to biomedical comput-
ing research problems. BioPSE provides the modeling, simulation, and visualization
modules; data structures; data converters; and application networks for bioelectric
field applications. With these components, researchers can investigate biomedical
research issues, such as bioelectric fields produced from epileptic seizures in the
brain to atrial arrhythmias in the heart.

An example electroencephalography (EEG) neural source localization applica-
tion is shown in Figures 1.2 and 1.3. Figure 1.2 contains the dataflow network that
implements the inverse EEG application. At the top of the network, the input data
files are loaded; these include the finite element mesh that defines the geometry
and electrical conductivity properties of the model and a precomputed lead-field
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Figure 1.2. BioPSE neural source localization network. The optimal dipole
source is recovered using a multi-start optimization algorithm.

matrix that encodes the relationship between electric sources in the domain and
the resulting potentials that would be measured at the electrodes. Further down
in the network, we have a set of modules that optimize the dipole location in order
to minimize the misfit between the measured potentials from the electrodes and
the simulated potentials due to the dipole. Finally, we have visualization and ren-
dering modules, which provide interactive feedback to the user. The visualization
that accompanies this network is shown in Figure 1.3. The potentials that were
measured at the electrodes on the scalp are rendered as pseudo-colored disks; the
potentials originating from the simulated dipole source are shown as pseudo-colored
spheres embedded within the disks. The rainbow colors of the disks and spheres
correspond to voltages, with red mapping to positive potentials, blue mapping to
negative potentials, and green mapping to ground. The difference in the color of
the sphere and the color of the disk at any particular electrode indicates the misfit
between the measured and simulated potentials at that site. The dipoles that are
iteratively approaching the true dipole location are shown as gray and blue arrows,
and the outside of the head model has been rendered with wire-frame cylinders.

PowerApps Historically, one of the major hurdles to SCIRun becoming a tool
for the scientist, as well as, the engineer has been SCIRun’s dataflow interface.
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Figure 1.3. Visualization of the iterative source localization. The voltages
of the true solution (disks) and the computed solution (spheres) are qualitatively
compared at the electrode positions as the optimization (shown as arrows) converges
on a neural source location. The solution misfit can be qualitatively interpreted by
pseudo-colored voltages at each electrode.

While visual programming is natural for computer scientists and engineers, who
are accustomed to writing software and building algorithmic pipelines, it can be
overly cumbersome for many application scientists. Even when a dataflow network
implements a specific application (such as the forward bioelectric field simulation
network provided with BioPSE and detailed in the BioPSE Tutorial), the user
interface (UI) components of the network are presented to the user in separate Ul
windows, without any semantic context for their settings. For example, SCIRun
provides file browser user interfaces for reading in data. However, on the dataflow
network all of the file browsers have the same generic presentation. Historically,
there has not been a way to present the filename entries in their semantic context,
for example to indicate that one entry should identify the electrodes input file and
another should identify the finite element mesh file.

A recent release of BioPSE/SCIRun (in October 2003) addressed this short-
comings by introducing PowerApps. A PowerApp is a customized interface built
atop a dataflow application network. The dataflow network controls the execution
and synchronization of the modules that comprise the application, but the generic
user interface windows are replaced with entries that are placed in the context of a
single application-specific interface window.

BioPSE contains a PowerApp called BioFEM. BioFEM has been built atop
the forward finite element network, and provides a useful example for demonstrating
the differences between the dataflow and Power App views of the same functionality.
In Figure 1.4, the dataflow version of the application is shown: the user has separate
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Figure 1.4. BioPSE dataflow interface to a forward bioelectric field appli-
cation. The underlying dataflow network implements the application with modular
inter-connected components called modules. Data are passed between the modules as
input and output parameters to the algorithms. While this is a useful interface for
prototyping, it can be nonintuitive for end-users; it is confusing to have a separate
user interface window to control the settings for each module. Moreover, the entries
in the user interface windows fail to provide semantic context for their settings. For
example, the text-entry field on the SampleField user interface that is labeled “Maz-
imum number of samples” is controlling the number of electric field streamlines that
are produced for the visualization.

interface windows for controlling different aspects of the simulation and visualiza-
tion. In contrast, the Power App version is shown in Figure 1.5: here, the application
has been wrapped up into a single interface window, with logically arranged and
semantically-labeled user interface elements composed within panels and notetabs.
In addition to bioelectric field problems, the BioPSE system can also be used
to investigate other biomedical applications. For example, we have wrapped the
tensor and raster data processing functionality of the Teem toolkit into the Teem
package of BioPSE, and we have used that increased functionality to develop the
BioTensor PowerApp, as seen in Figure 1.6. BioTensor presents a customized in-
terface to a 140 module dataflow network. With BioTensor the user can visualize
diffusion weighted imaging (DWI) datasets in order to investigate the anisotropic
structure of biological tissues. The application supports the import of DICOM
and Analyze datasets, and implements the latest diffusion tensor visualization tech-
niques, including superquadric glyphs[13] and tensorlines[25] (both shown).
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Figure 1.5. The BioFEM custom interface. Though the application is
functionality equivalent to the dataflow version shown in Figure 1.4, this PowerApp
version provides an easier-to-use custom interface. Fverything is contained within
a single window; the user is lead through the steps of loading and visualizing the
data with the tabs on the right; and generic control settings have been replaced with
conteztually appropriate labels; and application-specific tooltips (not shown) appear
when the user places the cursor over any user interface element.

1.4 Components for Scientific Computing

A number of component models have been developed for a wide range of software
applications. Java Beans[2], a component model from Sun, is a platform-neutral
architecture for the Java application environment. However, it requires a Java Vir-
tual Machine as the intermediate platform and the components must be written in
Java. Microsoft has developed the Component Object Model (COM)[17], a software
architecture that allows applications to be built from binary software components
on the Windows platform. The Object Management Group (OMG) developed the
Common Object Request Broker Architecture (CORBA)[18], which is an open,
vendor-independent architecture and infrastructure that computer applications can
use to work together in a distributed environment.

Many problem solving environments, such as SCIRun, employ these compo-
nent models, or one of their own. As an example, SCIRun provides a dataflow-
based component model. The Common Component Architecture (CCA) Forum,
a group of researchers from several DOE national laboratories and academic in-
stitutions, has defined a standard component architecture[1] for high performance
parallel computing. The CCA forum has defined a minimal set of standard inter-
faces that a high-performance component framework should provide to implement
high-performance components. This standard promotes interoperability between
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Figure 1.6. The BioTensor PowerApp. Just as with BioFEM, we have
wrapped up a complicated dataflow network into a custom application. In the left
panel, the user is guided through the stages of loading the data, co-registering MRI
diffusion weighted images, and constructing diffusion tensors. On the right panel,
the user has controls for setting the visualization options. In the rendering window
in the middle, the user can render and interact with the dataset.

components developed by different teams across different institutions. However,
CCA has not yet fully addressed the architecture of parallel components combined
with distributed computation.

CCA is discussed in more detail in Chapter 77, but we present an overview
here. The CCA model consists of a framework and an expandable set of compo-
nents. The framework is a workbench for building, connecting and running the
components. A component is the basic unit of an application. A CCA component
consists of one or more ports, and a port is a group of method-call based interfaces.
There are two types of ports: uses port and provides ports. A provides port (or
callee) implements its interfaces and waits for other ports to call them. A uses port
(or caller) issues method calls that can be fulfilled by a type-compatible provides
port on a different component.

A CCA port is represented by an interface, while interfaces are specified
through a Scientific Interfaces Definition Language (SIDL). A compiler is usually
used to compile a SIDL interface description file into specific language bindings.
Generally, component language binding can be provided for many different lan-
guages such as C/C++, Java, Fortran, Python etc. The Babel [14] compiler group
is working on creating this support for different languages within CCA.

SCIRun2 is a new software framework that combines CCA compatibility
with connections to other commercial and academic component models. SCIRun2
is based on the SCIRun[10] infrastructure and the CCA specification. It uti-
lizes parallel-to-parallel remote method invocation to connect components in a dis-
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tributed memory environment, and is multi-threaded to facilitate shared memory
programming. It also has an optional visual-programming interface.

Although SCIRun2 is designed to be fully compatible with CCA. It aims to
combine CCA compatibility with the strength of other component models. A few
of the design goals of SCIRun2 are:

1. SCIRun? is fully CCA compatible, thus any CCA components can be used in
SCIRun2 and CCA components developed from SCIRun2 can also be used in
other CCA frameworks.

2. SCIRun2 accommodates several useful component models. In addition to
CCA components and SCIRun Dataflow Modules, CORBA components, Mi-
crosoft COM components, ITK and Vtk[24] modules will be supported in
SCIRun2.

3. SCIRun2 builds bridges between different component models, so that we can
combine a disparate array of computational tools to create powerful applica-
tions with cooperative components from different sources.

4. SCIRun2 supports distributed computing. Components created on different
computers can work together through a network and build high performance
applications.

5. SCIRun2 supports parallel components in a variety of ways for maximum flex-
ibility. This is not constrained to only CCA components, because SCIRun2
employees a M process to N process method invocation and data redistri-
bution (MxN) library [5] that potentially can be used by many component
models.

Overall, SCIRun2 provides a broad approach that will allow scientists to com-
bine a variety of tools for solving a particular computational problem. The overarch-
ing design goal of SCIRun2 is to provide the ability for a computational scientist to
use the right tool for the right job, a goal motivated by the needs of our biomedical
and other scientific users.

1.5 Metacomponent Model

Systems such as Java Beans, COM, CORBA, CCA, and other successfully employ
a component-based architecture to allow users to rapidly assembly computational
tools in a single environment. However, these systems typically do not interact with
one another in a straightforward manner, and it is difficult to take components de-
veloped for one system and re-deploy them in another. Software developers must
buy in to a particular model and produce components for one particular system.
Users must typically select a single system or face the challenges of manually man-
aging the data transfer between multiple (usually) incompatible systems. SCIRun2
addresses these shortcomings through the meta-component model, allowing support
for disparate component-based systems to be incorporated into a single environment
and managed through a common user-centric visual interface. Furthermore, many
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Figure 1.7. Components of different models cooperate in SCIRun2

systems that are not traditionally thought of as component models, but that have
well-designed, regular structures, can be mapped to a component model and manip-
ulated dynamically. SCIRun2 combines support for CCA components, ”old-style”
SCIRun dataflow components, and we are planning support for CORBA, COM and
VTK. As a result, SCIRun2 can utilize SCIRun components, CCA components and
other software components in the same simulation.

The meta component model operates by providing a plug-in architecture for
component models. Abstract components are manipulated and managed by the
SCIRun2 framework, while concrete component models perform the actual work.
This facility allows components implemented with disparate component models to
be orchestrated together.

Figure 1.7 demonstrates a simple example of how SCIRun2 handles differ-
ent component models. Two CCA components, Driver and Integrator, and one
CORBA component, Function, are created in the SCIRun2 framework. In this
simple example, the Driver is connected to both the Function and Integrator. In-
side SCIRun2, two frameworks are hidden: the CCA framework and the CORBA
Object Request Broker (ORB). The CCA framework creates the CCA components,
Driver and Integrator. The CORBA framework creates the CORBA component,
Function. The two CCA components can be connected in a straightforward man-
ner through the CCA component model. However, the components Driver and
Function cannot be connected directly, because neither CCA nor CORBA allow a
connection from a component of a different model. Instead, a bridge component
is created. Bridges belong to a special internal component model that is used to
build a connection between components of different component models. In this ex-
ample, Bridge has two ports: one CCA port and one CORBA port. In this way it
can be connected to both CCA component and CORBA component. The CORBA
invocation is converted to request to the CCA port inside the bridge component.

Bridge components can be manually or automatically generated. In situa-
tions where interfaces are easily mapped between one interface and another, au-
tomatically generated bridges can facilitate interoperability in a straightforward
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way. More complex component interactions may require manually generated bridge
components. Bridge components may implement heavy-weight transformations be-
tween component models, and therefore have the potential to introduce performance
bottlenecks. For the few scenarios that require maximum performance, reimplemen-
tation of both components in a common, performance-oriented component model
may be required. However, for rapid prototyping, or for components that are not
performance-critical, this is completely acceptable.

To automatically generate a bridge component that translates a given pair
of components, a generalized translation must be completed between the compo-
nent models. A software engineer designs how two particular component models
will interact. This task can require creating methods of data and control trans-
lation between the two models and can be quite difficult in some scenarios. The
software engineer expresses the translation into a compiler plugin, which is used
as a specification of the translation process. A plugin abstractly represents the
entire translation between the two component models. It is specified by an eRuby
(embedded Ruby) template document. eRuby templates are text files that can be
augmented by Ruby [15] scripts. The Ruby scripts are useful for situations where
the translation requires more sophistication than regular text (such as control struc-
tures or additional parsing). This provides us with better flexibility and more power
inside the plugin, with the end goal of being able to support the translation of a
wider range of component models.

The only other source of information is the interface of the ports we want to
bridge (usually expressed in an IDL file). The bridge compiler accepts commands
that specify a mapping between incompatible interfaces, where the interfaces be-
tween the components differ in various names or types but not functionality. Using
a combination of the plugin and the interface augmented with mapping commands,
the compiler is able to generate the specific bridge component. This component
is automatically connected and ready to broker the translation between the two
components of different models.

Figure 1.8 shows a more complex example that is motivated by the needs of
a biological application. This example works very much like the last: the frame-
work manages components from several different component models through the
meta-model interface. Components from the same model interact with each other
natively, and interact with components in other models through bridges. Allow-
ing components to communicate with each other through their native mechanisms
ensures that no performance bottlenecks are introduced and that the original se-
mantics are preserved.

1.6 Distributed Computing

SCIRun2 provides support for Remote Method Invocation (RMI) based distributed
objects. This support is utilized in the core of the SCIRun framework in addition to
distributed components. This section describes the design of the distributed object
subsystem.

A distributed object is a set of interfaces defined by SIDL that can be refer-
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Figure 1.8. A more intricate example of how components of different
models cooperate in SCIRun2. The application and components shown are from a
realistic (albeit incomplete) scenario.

enced over network. The distributed object is similar to the C++ object, it utilizes
similar inheritance rules and all objects share the same code. However only methods
(interfaces) can be referenced, and the interfaces must be defined in SIDL. Using
the SIDL language, we implemented a straightforward distributed object system.
We extend the SIDL language and build upon this system for implementing parallel
to parallel component connections, as discussed in the next section.

A distributed object is implemented by a concrete C++ class, and referenced
by a proxy class. The proxy class is a machine-generated class that associates
the user-made method calls to a call by the concrete object. The proxy classes
are described in a SIDL file, and a compiler compiles the SIDL file and creates the
proxy classes. The proxy classes define the abstract classes with a set of pure virtual
functions. The concrete classes extends those abstract proxy classes and implement
each virtual functions.

There are two types of object proxies. One is called server proxy, the other
is called client proxy. The server proxy (or skeleton) is the object proxy created in
the same memory address space as the concrete object. When the concrete object
is created, the server proxy starts and works as a server, waiting for any local or
remote methods invocations. The client proxy (or stub) is the proxy created on a
different memory address space. When a method is called through the client proxy,
the client proxy will package the calling arguments into a single message, and send
the message to the server proxy, and then wait for the server proxy to invoke the
methods and return the result and argument changes.

We created Data Transmitter, a separate layer, that is used by the generated
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proxy code for handling messaging. We also employ the concept of a Data Trans-
mission Point (DTP), which is similar to the start point and end points used in
Nexus [8]. A DTP is a data structure that contains a object pointer pointing to the
context of a concrete class. Each memory address space has only one Data Trans-
mitter, and each Data Transmitter uses three communication ports (sockets): one
listening port, one receiving port and one sending port. All the DTPs in the same
address space share the same Data Transmitter. A Data Transmitter is identified
by its universal resource identifier(URI): TP address + listening port. A DTP is
identified by its memory address together with the Data Transmitter URI, because
DTP addresses are unique in the same memory address space. Optionally, we could
use other type of object identifiers.

The proxy objects package method calls into messages by marshaling objects
and then waiting for a reply. Non-pointer arguments, such as integers, fixed sized
arrays and strings (character arrays), are marshaled by the proxy into a message in
the order that they are presented in the method. After the server proxy receives the
message, it unmarshals the arguments in the same order. A array size is marshaled
in the beginning of an array argument, so the proxy knows how to allocate memory
for the array. SIDL supports a special opaque data type that can be used to
marshal pointers if the two objects are in the same address space. Distributed
object references are marshaled by packaging the DTP URI (Data Transmitter URI
and object ID). The DTP URI is actually marshaled as a string and when it is
unmarshaled, a new proxy of the appropriate type is created based on the DTP
URL

C++ exceptions are handled as special distributed objects. In a remote
method invocation, the server proxy tries to catch an exception (also a distributed
object) before it returns. If it catches one, the exception pointer is marshaled to
the returned message. Upon receiving the message, the client proxy unmarshals the
message and obtains the exception. The exception is then re-thrown by the proxy.

1.7 Parallel Components

This section introduces the CCA parallel component design and discusses issues of
the implementation. Our design goal is to make the parallelism transparent to the
component users. In most cases, the component users can use a parallel component
as the way they use sequential component without knowing that a component is
actually parallel component.

Parallel CCA Component (PCom) is a set of similar components that run in
a set of processes respectively. When the number of process is one, the PCom is
equivalent to a sequential component. We call each component in a PCom a member
component. Member components typically communicate internally with MPT [16]
or an equivalent message passing library.

PComs communicate with each other through CCA-style RMI ports. We
developed a prototype parallel component infrastructure [4, 3] that facilitates con-
nection of parallel components in a distributed environment. This model supports
two types of methods calls: independent and collective, and as such our port model



14 Chapter 1. Integrating Component-Based Scientific Computing Software

supports both independent and collective ports.

An independent port is created by a single component member, and it contains
only independent interfaces. A collective port is created and owned by all compo-
nent members in a PCom, and one or more of its methods are collective. Collective
methods require that all member components participate in the collective calls in
the same order.

As an example of how parallel components interact, let pA be a uses port of
component A, and and pB be a provides port of component B, Both pA and pB
have the same port type, which defines the interface. If pB is a collective port, and
has the following interface,

collective int foo(inout int arg);

Then getPort(“pA”) returns a collective pointer that points to the collective port
pB. If pB is an independent port, getPort(“pA”) returns a pointer that points to
an independent port.

Component A can have one or more members, so each member might obtain
a (collective/independent) pointer to a provides port. The component developer
can decide what subset (one, many, or all components) participate in a method call
foo(arg). When any member component register a uses port, all other members can
share the same uses port. But for a collective provides port, each member must call
addProvidesPort to register each member port.

The MzN library takes care of the collective method invocation and data
distribution. We repeat only the essentials here, one can reference [5] for details.
If a M-member PCom A obtains a pointer ptr pointing to a N-member PCom’s
B collective port pB. Then ptr—foo(args) is a collective method invocation. The
MzN library index PCom members with rank 0,1,....M-1 for A and 0,1,...,N-1 for
B. If M = N, then the i-th member component of A call foo(args) on the i-th
component of B. But if M<N, then we “extend” the A’s to 0,1,2,....M, 0, 1,2,...M,
... N-1 and they call foo(args) on each member component of B like the M=N case,
but only the first M calls request returns. The left panel of Figure 1.9 shows an
example of this case with M=3 and N=5. If M>N, we “extends” component B’s set
to 0, 1, ..., N, 0, 1,...,N, ...,M-1 and only the first N member components of B are
actually called, and the rest are not called but simply return the result. We rely on
collective semantics from the components to ensure consistency without requiring
global synchronization. The right panel of Figure 1.9 shows an example of this case
with M=5 and N=3.

The MxN library also does most of the work for the data redistribution.
An multi-dimensional array can be defined as a distributed array that associates
a distribution scheduler with the real data. Both callers and callees define the
distribution schedule before the remote method invocation, using an first-stride-
last representation for each dimension of the array. The SIDL compiler creates the
scheduler and scheduling is done in the background.

With independent ports and collective ports, we cover the two extremes. Ports
that require communication among a subset of the member components present a
greater challenge. Instead, we utilize a sub-setting capability in the MxN system
to produce ports that are associated with a subset of the member components, and
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Figure 1.9. MxzN method invocation, with the caller on the left and the
callee on the right. In the left scenario, the number of callers is fewer than the
numbers of callees, so some callers make multiple method calls. In the right, the
number of callees is fewer, so some callees send multiple return values.

then utilize them as collective ports.

SCIRun2 provides the mechanism to start a parallel component either on
shared memory multi-processors computers, or clusters. SCIRun2 consists of a
main framework and a set of Parallel Component Loaders (PCLs). A PCL can
be started with ssh on a cluster, where it gathers and reports its local component
repository and registers to the main framework. The PCL on a N-node cluster
is essentially a set of loaders, each running on a node. When the user requests
to create a parallel component, the PCL instantiate a parallel component on its
processes (or nodes), and passes a distributed pointer to the SCIRun2 framework.
PCLs are responsible to create and destroy components running on their nodes, but
they do not maintain the port connections. The SCIRun2 framework maintains all
component status and port connections.

Supporting threads and MPI together can be difficult. MPI provides a conve-
nient communication among the processes in a cluster. However, if any process has
more than one thread and the MPI calls are made in those threads, the MPI com-
munication may break because MPI distinguish only processes, not threads. The
MPI interface allows an implementation to support threads but does not require
it. Most MPI implementations are not threadsafe. We provide support for both
threadsafe and non-threadsafe MPI implementations so that users can choose any
available MPI.

A straightforward way to support non-threadsafe MPI is to globally order
the MPI calls such that no two MPI calls are executed at the same time. We
implemented a distributed lock, which has two interfaces:

PRMI::lock()
PRMI: :unlock()
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Figure 1.10. Components of different models cooperate in SCIRun2

The distributed lock is just like a mutex, but it is collective with respect
to all MPI processes in a cluster. The critical section between PRMI::lock() and
PRMI::unlock() can be obtained by only one set of threads in different MPI pro-
cesses. The users must call PRMI::lock() before any MPI calls and call PRMI::unlock()
after to release the lock. More than one MPI calls can be made in the critical sec-
tion. In this way only one set of threads (each from a MPI process) can make MPI
calls at one time. Additionally, the overhead of acquiring and releasing this lock is
very high because it requires a global synchronization. However, in some cases this
approach is necessary for supporting the multi-threaded software framework in an
environment where a thread-safe MPI is no available.

It is fairly easier to support threadsafe MPI. Our approach is to create a
distinct MPI communicator for the threads that communicate with each other, and
restrict that those threads can use only that communicator for MPI communication.
The special communicators are created by the PCL and can be obtained through a
framework service interface. The threadsafe MPI allows multiple MPI calls executed
safely at the same time, and the designated communicators help to identify the
group of threads which initiated the MPI calls.

An efficient mechanism allows parallel components to efficient coordinate around
error conditions [6].

Figure 1.10 shows a SCIRun2 application that uses bridging to Vtk visualiza-
tion components. SCIRun?2 is currently under development, but we expect a public
release in the near future.
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1.8 Conclusions and Future Work

We presented the SCIRun, BioPSE, and SCIRun2 problem solving environments for
scientific computing. These systems all employ software components to encapsulate
computational functionality into a reusable unit. SCIRun and BioPSE are open
source and have biannual public releases and are used by a number of end-users for
a variety of different computational applications.

Additionally, we presented an overview of the new SCIRun2 component frame-
work. SCIRun2 integrates multiple component models into a single visual problem
solving environment and builds bridges between components of different component
models. In this way, a number of tools can be combined into a single environment
without requiring global adoption of a common underlying component model. We
have also described a parallel component architecture utilizing the common com-
ponent architecture, combined with distributed objects and parallel MaxN array
redistribution that can be used in SCIRun2.

A prototype of the SCIRun2 framework has been developed, and we are using
this framework for a number of applications in order to demonstrate the SCIRun2
features. Future applications will rely more on the system, and will facilitate joining
many powerful tools, such as the SCI Institutes’ interactive ray-tracing system [19]
and the Uintah [7] parallel, multi-physics system. Additional large scale compu-
tational applications are under construction and are beginning to take advantage
of the capabilities of SCIRun2. Support for additional component-models, such as
Vtk, CORBA, and possibly others, will be added in the future.
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