
1

Multi-Threaded Streaming Pipeline For VTK

Huy T. Vo and Cláudio T. Silva

UUSCI-2009-005

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

May 27, 2009

Abstract:

In this document, we describe the implementation details of our proposal on how to modify the
VTK pipeline execution framework to support improved streaming and multi-threaded capabilities.
We believe the functionality reported here is the best way to start adding this functionality to VTK.
(See [1] for a higher-level description of the work that includes more functionality). The plan would
be to first settle on the basic functionality; after that, it should not be hard to continue adding the
rest of the framework to VTK (e.g., support for streaming unstructured data structures and GPUs).

Multi-Threaded Streaming Pipeline For VTK

Huy T. Vo and Cláudio T. Silva

SCI Institute
University of Utah

May 27, 2009

1 Introduction

In this document, we describe the implementation details of our proposal on how to modify
the VTK pipeline execution framework to support improved streaming and multi-threaded
capabilities. We believe the functionality reported here is the best way to start adding this
functionality to VTK. (See [1] for a higher-level description of the work that includes more
functionality). The plan would be to first settle on the basic functionality; after that, it
should not be hard to continue adding the rest of the framework to VTK (e.g., support for
streaming unstructured data structures and GPUs).

2 Pipeline Architecture

In the most current implementation (version 5.4), VTK uses vtkStreamingDemandDriven-

Pipeline as its default executive. This executive supports streaming by performing multiple
updates with smaller regions of the input data. This is done by allowing algorithms to mod-
ify information of a request to notify the executive of continuous execution as well as update
extents. An example is the image streaming class vtkImageDataStreamer, which is usually
connected at the end of an image streaming network. When using this class, instead of
passing the whole extents of the output image upstream once for update, the pipeline breaks
this extent into multiple regions and pass them upstream in multiple passes. In particular,
for an update request, it puts the current update extent into the UPDATE EXTENT block of
the request, and use the flag CONTINUE EXECUTING to trigger new update passes from the
executive if there are more pieces needed to be processed.

This design can be used to increase memory locality and pipeline performance, however, it
is not efficient on multi-core machines. The main reason is that calling updates on algorithms
causes a lack of parallelism during execution. When an update is called on an algorithm,
with a REQUEST DATA request, upstream modules are always called to update sequentially,
even though in many cases, they can all be updated concurrently. Similarly, with streaming,

1

updates are also being called sequentially, thus, at any particular time, there is only one
algorithm actively processing a piece of data. This results in an under-utilization of resources
when other modules could process other pieces of data at the same time.

The goal of our Streaming and Multi-Threaded framework (for more details, see [1]) is
to resolve the above issues by deriving a new executive, vtkThreadedStreamingDemand-

DrivenPipeline. We add two parallel updating mechanism to VTK:

Multi-Threaded Update For a pipeline, when an update requests is passed upstream,
upstream modules will be updated simultaneously in separate threads. The number of
threads is by default limited by the number of cores on the running machine. To avoid the
case of an algorithm is requested to update by more than one downstream module, which
would cause code failure due to the non-reentrant implementation of most algorithms, mod-
ules with more than one immediate downstream modules will be explicitly updated before
their children. The multi-threaded capability is turned on by default for all VTK modules
using our executive, but can be turned off by a global call to vtkThreadedStreamingDe-

mandDrivenPipeline::SetMultiThreadedEnable.

Parallel Streaming Computation For a streaming pipeline in our framework, modules
are allowed to process concurrently with different pieces of data. To ensure the efficiency
in resource usage, we also implement a scheduler that is responsible for queuing module
executions as well as how many threads they should run (if they can utilize more than
one thread). Each module is running in their own thread(s) and will become active only
when the data of its upstream modules are ready. Since, in VTK, the data object output
from one module is passed directly downstream, modules with immediate relation (direct
child or parent), are not allowed to run simultaneously, to avoid overlapping data accesses.
In order to use this new streaming pipeline, a streaming network must begins with Stream
Generator(s) and ends with a Stream Merger respectively. Stream generators are responsible
for producing pieces data and the mergers will collect the data and merge/write to the final
output. A merger can have multiple generators and there can also be more than one mergers
in a single pipeline. The actual implementations of these generators and mergers can greatly
differ from one network to another, depending on the computation.

3 Implementation Details

Here is the list of files that have been modified and/or added to VTK to support our multi-
threaded streaming framework and a simple implementation of image data streaming.

3.1 List of Files

Added

Filtering/vtkThreadedStreamingDemandDrivenPipeline.h

Filtering/vtkThreadedStreamingDemandDrivenPipeline.cxx

2

Filtering/vtkStreamInterface.h

Filtering/vtkStreamInterface.cxx

Filtering/vtkComputingResources.cxx

Filtering/vtkComputingResources.h

Filtering/vtkExecutionScheduler.cxx

Filtering/vtkExecutionScheduler.h

Implementation of Image Data Streaming

Imaging/vtkImageDataStreamGenerator.cxx

Imaging/vtkImageDataStreamGenerator.h

Imaging/vtkImageDataStreamMerger.cxx

Imaging/vtkImageDataStreamMerger.h

3.2 Details

Below, we describe the implementation details of each file or changes to existing files.

Filtering/vtkStreamInterface.{h,cxx}
The streaming interface consists of a set of functions such as IsStreamGenerator and

IsStreamMerger to indicate whether an algorithm is a stream generator or merger. A
stream generator can then further implement IsEndOfStream, StreamRestart, StreamNext
and StreamRetrieve to control how data should be generated. Likewise, a stream merger
also needs to implement StreamMergeCurrentInput to collect data from upstream pieces.
Though the streaming interface can be separated into a separate interface class, it is more
convenient for algorithm developers if it is incorporated with vtkAlgorithm, since subclasses
from VTK’s default algorithms such as vtkImageAlgorithm, vtkPolyDataAlgorithm, etc.
can also support streaming.

An algorithm can define a streaming module by setting either IS STREAM GENERATOR or
IS STREAM MERGER key of vtkThreadedStreamingDemandDrivenPipeline in their Infor-

mation property. If any of these two keys are defined, the algorithm is also required to define a
vtkStreamInterface object in their Information property under the key STREAM INTERFACE.
This object should implement the above interface methods so that the executive can interact
with the module.

Filtering/vtkThreadedStreamingDemandDrivenPipeline.{h,cxx}
This is the default executive of our framework. This inherits directly from vtkStream-

ingDemandDrivenPipeline, with changes to 2 functions ForwardUpstream, ProcessRe-

quest, and CallAlgorithm.
ForwardUpstream interrupts the default forwarding requests when the request is RE-

QUEST DATA and uses a thread-pool to perform updates simultaneously. The maximum
number of thread of this thread pool is also obtained from vtkMultiThreader:: Get-

GlobalDefaultNumberOfThreads(). ForwardUpstream also goes up more than one level of

3

immediate upstream modules to search for modules with more than one output connections
and update those first before spawning threads.

ProcessRequest, CallAlgorithm and the rest of the code in these two files are for
performing the general streaming framework. The change in ProcessRequest is simply for
logging the computation time of all REQUEST DATA requests. These statistics are used for the
scheduling strategy. CallAlgorithm is the actual control flow of the streaming framework.
Its general algorithm can be briefly expressed in an event-driven fashion as below, however,
all the modules are updated concurrently with the help of the scheduler.

StreamGenerator->StreamRestart()

while not StreamGenerator->IsEndOfStream() do

StreamGenerator->StreamRetrieve()

<Pass data down to Streaming Modules>

StreamMerger->StreamMergeCurrentInput()

Scheduler->Reschedule()

StreamGenerator->StreamNext()

This algorithm is triggered whenever an update is request on any stream merger. From
the merger, a simple traverse upstream is performed to collect all corresponding stream
generators. All the modules that stay between those stream generators and merger will be
mark as streaming modules. Thus, each block of stream merger and generators are associated
with its own scheduler and control flow.

Filtering/vtkComputingResources.{h,cxx}
This file holds the definition of a computing resource, which can be either CPU (threads)

or GPU (CUDA kernels). The interface implements a few operation on resources to be used
by the scheduler. One of them is IncreaseByRatio. This basically tells the scheduler how
to divide a resource based on a ratio (its updated time). The current implementation for
VTK only uses the CPU threads as its resources. In order to manage resources for subclasses
of vtkThreadedImageAlgorithm without changing the default code, the CPU resource class
also knows how to setup the resource to an algorithm (by checking the class name and call
SetNumberOfThreads).

Filtering/vtkExecutionScheduler.{h,cxx}
This class is responsible for scheduling resources as well as executions for a network of

modules. Resources can be distributed by calling RescheduleNetwork. This function will
start from a stream merger, and based on its computation time and how long it took for
its upstream modules to deliver inputs in the previous request, it will divide the resources,
the number of threads, across all of them. Then the distribution process are recursively
propagated upstream until it reaches the stream generators. Currently, we uses a greedy
strategy to split the number of threads evenly with the time ratio.

The scheduler also manages the execution of modules such that resources are fully utilized
without being overflow. When the executive requests to update through Run, it will be put

4

to sleep on the scheduler queue and wait until there are enough resources to run. Once a
module is done executing, Finish will be called to suspend the module and put a lock on
itself while releasing all the locks from its immediate modules to prevent overlapping data
accesses.

Imaging/vtkImageDataStreamMerger.{h,cxx}
This is a concrete implementation of a stream merger for image data. Its role is similar

to vtkImageDataStreamer, and should be connected at the end of a streaming network to
collect and merge pieces of data after processing. Besides using the same NumberOfStream-

Divisions property as vtkImageDataStreamer to control how many pieces to break the
stream. It also implements the following 4 functions:

virtual bool IsStreamMerger() { return true; }

virtual int ProcessRequest(vtkInformation*,

vtkInformationVector**,

vtkInformationVector*);

virtual void StreamMergeCurrentInput(vtkInformationVector*);

Since the streaming algorithm is executing in a top-down, event-driven manner, the
overlapping region of the input pieces must be computed beforehand. This is done by the re-
implementation of the handler of REQUEST UPDATE EXTENT in ProcessRequest. It will pass a
sample extent, which is equivalent to the size of a piece extent, in STREAM SAMPLE EXTENT all
the way up to the generators and perform a difference computation of the overlapping region.
StreamMergeCurrentInput will concatenate pieces together by appending later pieces to the
bottom of the image.

Imaging/vtkImageDataStreamGenerator.{h,cxx}
This is a concrete implementation of a stream generator for image data. It should take

inputs from any image reader or could be subclassed to act as a stream image reader. The
following functions are implemented:

virtual bool IsStreamGenerator() { return true; }

virtual int ProcessRequest(vtkInformation*,

vtkInformationVector**,

vtkInformationVector*);

virtual void StreamRestart();

virtual int StreamNext();

virtual void StreamRetrieve(vtkInformationVector* outputVector);

virtual bool IsEndOfStream();

In working with vtkImageDataStreamMerger, the ProcessRequest function in vtkIm-

ageDataStreamGenerator will take the STREAM SAMPLE EXTENT information to setup its
piece size as well as how large its overlapped region should be by subtracting sample ex-
tent from UPDATE EXTENT. StreamRestart is just for resetting the current piece number to

5

vtkContourFilter

vtkDataSetMapper

vtkActor

vtkDataSetReader

vtkContourFilter

vtkDataSetMapper

vtkActor

vtkDataSetReader

vtkRenderWindow

vtkRenderer

vtkContourFilter

vtkDataSetMapper

vtkActor

vtkContourFilter

vtkDataSetMapper

vtkActor

vtkDataSetReader

vtkRenderWindow

vtkRenderer

11

2 2

3 3

44

5

5

6

6

7

7

9

9 8

8

10

(a) (b)

Figure 1: Two simple iso-contour pipelines extracting two surfaces from (a) two different
datasets and (b) a single dataset.

0. The piece number is used in StreamNext to construct the piece extent and pass upstream
for requesting data. StreamRetrieve will retrieve the current piece data of the stream gen-
erator and pass it to the module output. Finally, IsEndOfStream will return true when the
current piece extent is falling outside the whole image extent.

COMPATIBILITY ISSUES
To preserve the ability of being cross-platformed of VTK, we use vtkMultiThreader and

vtkMutexLock for multi threaded implementation as well as vtkTimerLog::GetUniversalTime()
to measure the performance time of module executions. Moreover, our new executive is also
backward-compatible to all existing VTK’s pipelines, however, it can achieve higher perfor-
mances especially with new streaming pipelines.

4 Illustrative Examples

4.1 Multi-Threaded Update

Figure 1 illustrates two simple pipelines that could benefit from our multi-threaded update
mechanism. The number on the top left corner indicate the order of update using the default
VTK execution engine. In the new framework, all requests, except REQUEST DATA, will also
be processed in the same order. For the case of Figure 1a, when REQUEST DATA was requested
from vtkRenderWindow to vtkRenderer, which has two upstream modules, the thread pool
will spawn 2 threads, one to go up vtkActor (4) and the other to (8). This results in
independent executions of two sets of modules (1,2,3,4) and (5,6,7,8).

6

Similarly, in Figure 1b, a pipeline of rendering two iso-surfaces out of a single dataset,
however, if upstream modules of vtkRenderer were to be updated simultaneously in two
threads, the module vtkDataSetReader may be re-entered from both threads at the same
time. This will crash since VTK classes are not thread-safe. With the current implemen-
tation of vtkThreadedStreamingDemandDrivenPipeline, when forwarding REQUEST DATA

from vtkRenderer, it will go upstream and check for modules more than one output, which
is vtkDataSetReader in this case, and explicitly update it first. This will cause later requests
from (2) or (5) will be ignored since it is already up-to-date. Thus, the execution of this
pipeline is (1), then concurrent execution of two sets (2,3,4) and (5,6,7), then (8) and (9).

4.2 Parallel Streaming Computation

Figure 2 shows how an edge detection pipeline can be setup in VTK using our framework.
In Figure 2a, there is no streaming, each modules is updated sequentially from (1) to (8).
Because, modules (2,3,4) are inherited from vtkThreadedImageAlgorithm, it can actually
run in multiple threaded. For example, on a machine with 4-core, (2) will be executed
using 4 threads, then (3) will execute in 4 threads, and so as (4). Figure 2b shows a
typical VTK image streaming pipeline, where vtkImageDataStreamer is plugged into the
end of an image network. This class will separate output extent into smaller chunks and
perform multiple update requests. For example, if vtkImageDataStreamer has the property
NumberOfStreamDivisions set to 3, then the image will be divided into 3 portions. Then,
it will sequentially apply modules (2,3,4,5) on each portion. Briefly, if each module takes 1
unit of time to update, the time line of execution for Figure 2b is {1, 2,3,4,5, 2,3,4,5, 2,3,4,5,
6, 7, 8, 9}.

Figure 2c is how the same streaming pipeline can be implemented in our framework.
Besides vtkImageDataStreamMerger which is similar to vtkImageDataStreamer, vtkIm-

ageDataStreamGenerator is also required to put at the beginning of a streaming network.
When the module (6), vtkImageDataStreamMerger, is requested to update, it will go up-
stream and search for vtkImageDataStreamGenerator and find (2). All modules inside this
block will be updated parallel using the scheduler of (6). Given the data locking mechanism,
there are two sets of modules (2,4,6) and (3,5) can be updated simultaneously. Again, for
a division of 3 pieces and if each module takes exactly 1 unit of time to update, the corre-
sponding execution time line is {1, 2, 3, (4,2), (5,3), (6,4,2), (5,3) (6,4), 5, 6, 7, 8, 9, 10},
with concurrently updated modules placed inside the parenthesises.

Figure 2d shows a more complicated example as one merger may have multiple gener-
ators. The example is a blend of edge detection with a background image. In order to
work in our framework, it requires that the two generators can split to the same number of
pieces as well as their pieces can be computed in pairs. The whole block between vtkImage-

DataStreamMerger and two vtkImageDataStreamGenerator also share a single scheduler
and controlled by the vtkImageDataStreamMerger’s executive.

7

vtkImageGaussianSmooth

vtkImageLuminance

vtkImageThreshhold

vtkPNGReader

vtkDataSetMapper

vtkActor

1

2

3

4

5

vtkImageDataStreamer
5

6

vtkRenderWindow

vtkRenderer

8

7

vtkImageGaussianSmooth

vtkImageLuminance

vtkImageThreshhold

vtkPNGReader

vtkDataSetMapper

vtkActor

1

2
vtkImageDataStreamGenerator

2

3

4

6

7

vtkRenderWindow

vtkRenderer

9

8

vtkImageDataStreamMerger
6

vtkImageGaussianSmooth

vtkImageLuminance

vtkImageThreshhold

vtkPNGReader

vtkDataSetMapper

vtkActor

1

3

4

5

vtkImageBlend

7

8

vtkRenderWindow

vtkRenderer
9

10

vtkImageDataStreamMerger

vtkDataSetMapper

vtkActor

vtkRenderWindow

vtkRenderer

vtkImageDataStreamGenerator

vtkImageGaussianSmooth

vtkImageLuminance

vtkImageThreshhold

vtkPNGReader

vtkImageDataStreamGenerator

vtkImageGaussianSmooth

vtkPNGReader

(a)

(b)

(c)
(d)

Figure 2: Difference in VTK (a), VTK’s streaming (b) and our streaming framework (c) in
an edge detection pipeline. (d) illustrates a pipeline with one stream merger against more
than one stream generator in our framework.

References

[1] H. T. Vo, D. K. Osmari, B. Summa, J. L. Comba, V. Pascucci, and C. T. Silva. Parallel
dataflow scheme for streaming (un)structured data. Technical report, SCI Institute,
University of Utah, 2009. unpublished.

8

