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ABSTRACT: One of the difficulties researchers face when exploring flow fields is understanding the respective 

strengths and limitations of the visualization and analysis techniques that can be applied to their particular 

problem. We consider in this paper the visualization of doubly periodic flow fields. Specifically, we compare and 

contrast two traditional visualization techniques, the Poincaré plot and the finite-time Lyapunov exponent (FTLE) 

plot with a technique recently proposed by the authors, which enhances the Poincaré plot with analytical results 

that reveal the topology. As is often the case, no single technique achieves a holistic visualization of the flow field 

that would address all the needs of the analysis. Instead, we show that additional insight can be gained from 

applying them in combination. 

 

1 Introduction 

One of the difficulties researchers face when exploring flow fields is understanding the 

respective strengths and limitations of the flow visualization and analysis techniques that can be 

utilized for their particular application. In this paper, we consider techniques that can be applied 

to flow fields that are doubly periodic. Two examples are toroidal magnetic fields [1] and 

rotating cylindrical flow fields [2]. These flow fields are periodic in the toroidal and poloidal 

directions and are form a Hamiltonian system [4]. In magnetic confinement fusion reactors, (e.g., 

tokamaks), toroidal magnetic fields are used to confine a burning plasma. A rotating cylinder 

flow field on the other hand has a vertical overturning and horizontal swirling motion and is an 

idealization of motion observed in ocean eddies.   

 

When these fields are perturbed by a symmetry breaking disturbance, chaos arises. Some 

trajectories survive the perturbation and act as barriers to chaotic transport, a result consistent 

with an extension of the KAM theorem for three-dimensional, volume-preserving flow [4]. 

Understanding the development and breakdown of these fields is a critical research component in 

fusion reactor design and in the study of ocean transport, respectively. 

 

In this paper, we compare and contrast two traditional visualization techniques, namely the 

puncture plot (i.e., Poincaré map [3]) and the finite-time Lyapunov exponent (FTLE) plot [5,6] 

with a recently developed technique, the enhanced puncture plot, which allows for visualization 

and analysis [7,8]. As our primary focus is on comparing these visualization techniques, the 

reader is here referred to [3-8] to for more technical details. 

http://www.cs.purdue.edu/cgvlab
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2 Methods 

The simplest way to explore a doubly periodic system that is topologically a torus with a major 

and minor axis is to create a puncture plot. To create such a plot, one defines a plane 𝛴 

perpendicular to the major axis. Next one selects a series of initial conditions (or seed points) on 

from which trajectories (integral curves) are computed.  The seeds are typically uniformly spaced 

along a line in the plane rather than on a 2D grid because for quasi-periodic Hamiltonian systems 

integral curves are typically volume filling. The successive intersections of the trajectories with 

the puncture plane (i.e. the Poincaré map) forms the puncture plot, Figure 1. 

 

          
Figure 1. Poincaré map. Left: Transverse plane and trajectories. Right: Topological structures 

associated with a Poincaré map in a so-called near-integrable dynamical system, such as those 

considered in this paper. 

 

Creating a puncture plot is simple and only requires an accurate integration scheme and a fast 

puncture test. However, though the integral curves are volume filling, there is no guarantee that 

the complete volume will be sampled during the chosen finite number of integration steps thus 

structures may be missed. Further, the formation of structures is highly dependent on trajectory 

length (i.e., the number of integration steps). As such, structures may not be properly revealed if 

too few integration steps are taken. Despite these drawbacks, it is the predominant tool used to 

explore periodic flow fields. 

 

Another technique often used to explore flow fields is to plot the finite-time Lyapunov exponent 

(FTLE) for a trajectory [5,6]. The FTLE is a scalar value that represents the rate of separation of 

infinitesimally close trajectories. Similar to the puncture plot, for doubly periodic systems the 

FTLE plot can be combined with dimension reduction since it suffices to consider its restriction 

to a plane perpendicular to the major axis. However, unlike the puncture plot which relies on a 

small number of trajectories to form the flow map, the FTLE plot is computationally expensive 

because it requires a large number of trajectories to densely construct the flow map. 

 

One of the problems that must be addressed when calculating FTLE is the choice of spatial 

discretization. While the FTLE plot can show the overall large-scale structures, very fine details 

can be hard to discern or will be missed entirely unless a finer grid is used. Further, we follow 

the process described by Onu [6] and utilize an auxiliary grid to achieve an increase in accuracy 

of the finite difference approximation used in the computation of the derivative of the Cauchy-

Green strain tensor.  However, increasing the sampling resolution and using an auxiliary grid 
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come with a greater computational cost [9]. Owing to the chaotic nature of the systems being 

explored many structures will be obfuscated by aliasing artifacts and therefore are hard to discern.  

 

One of the deficiencies with both the Poincaré and FTLE plots is that they do not permit any 

direct quantitative analysis of the periodicity within the flow field, specifically, the toroidal and 

poloidal periodicity. However, Lagrangian coherent structures (LCS) such as shrink (repelling 

LCSs) and stretch lines (attracting LCSs) can be extracted using techniques described by Onu [6]. 

 

Recently, the authors proposed a technique that while adaptively creating a Poincaré plot 

analyzes the trajectory and determines among other characteristics, the toroidal and poloidal 

periodicity of the trajectory [7,8]. Subsequent analysis of the periodicity can then be used to 

determine whether the trajectory is rational, irrational, or forms an island chain. If the 

fundamental periods are equal to the toroidal and poloidal periods, the trajectory lies on a 

rational or irrational surface, whereas if the fundamental periods are proportional to the toroidal 

and poloidal periods, the trajectory lies on an island chain [8]. Topologically, an island chain is a 

series of homoclinic connections between the successive return points of a hyperbolic periodic 

orbit. This quantitative analysis is used to create an enhanced Poincaré plot which allows 

insightful cross sectional profiles to be generated using a small number of puncture points. That 

is the profile consists of a series of line segments based on a small number of puncture points. In 

contrast, a traditional Poincaré plot relies on a large number of puncture points to imply a cross 

sectional profile. 

Results 

We compare and contrast these three techniques for visualization and demonstrate how the 

analysis aids in the understanding of the flow map. Each technique represents a compromise 

between responsiveness and interactivity on one hand, and detailed and precise analysis on the 

other hand. 

 

In this investigation, we consider two practical cases of Hamiltonian dynamical systems with two 

degrees of freedom, namely toroidal magnetic fields and rotating cylindrical flow fields [4]. The 

first example stems from a simulation of the disruption of the magnetic field in the DIII-D 

tokamak [1,10] where physicists were interested in the breakup of the magnetic field and the 

subsequent loss of confinement of the burning plasma. The second example corresponds to a 

simulation of chaotic advection within a steady, three-dimensional, Ekman-driven, rotating 

cylinder flow, where oceanographers study the formation of ocean mesoscale and submesoscale 

eddies [2]. In both cases, the simulation utilizes a high-resolution grid composed 2D Lagrange-

type finite elements, and finite Fourier series [11] or 3D spectral elements [12], respectively. 

 

Each of the three techniques discussed previously were implemented as part of the VisIt toolkit 

using the Parallel Integral Curve System (PICS) [13,14]. The PICS system allows for massively 

parallel computation of integral curves using a variety of integration methods. The Adams-

Bashforth method was selected because of its accuracy and its use of a fixed step length, which is 

important because the periodicity analysis requires dense sampling along the integral curve. 

Though the PICS systems supports the integration of time-varying flow fields, in both examples 

we restrict our considerations to the steady state integral curves and surfaces that are formed. In 
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the visualization vernacular, steady state integral curves are referred to as streamlines, whereas 

time-dependent integral curves are referred to as pathlines. 

 

As an introduction to the first case, we show the contrast in the complexity of stochastic and non-

stochastic integral curves as they traverse through the steady state flow field from [2], Figure 2. 

The corresponding Poincaré plot used ~100 seed points and clearly shows surfaces and islands 

chains in both the non-stochastic and stochastic regions, Figure 3. Such plots are the de facto 

standard because of the ease of their construction. However, because the color mapping is based 

on the seed point’s unique identifier, disambiguating between adjacent surfaces can be difficult. 

 

              
Figure 2. An example of the complexity of two stochastic (left) and non-stochastic (right) 

integral curves as they traverse through the steady state flow field from [2]. 

 

A FTLE plot was then constructed using a 400x400 grid of seed points equally spaced 

throughout the domain in the X-Z plane using a 3D auxiliary grid as described by Onu [6]. The 

auxiliary grid was comprised of six points placed symmetrically around each seed point. Though 

the FTLE plot is being constructed the X-Z plane, for a 3D auxiliary grid was used because the 

trajectories are 3D. Though not shown, utilizing a 2D grid results in artifacts. The resulting 

FTLE plot required 960K points with 200K integration steps, Figure 5. The FTLE plot clearly 

shows the stochastic regions as a noise pattern with many seemingly organized structures within 

it. Conversely, there are artifacts due do the somewhat coarse sampling density that appear as 

moray patterns.  

 

If we compare the sparse Poincaré plot with the dense FTLE plot, it is obvious that the number 

of seed points utilized is clearly the dominating parameter. For instance, in the lower left corner 

is a complex island chain. Visible in Poincaré plot are both primary and secondary island chains 

(a secondary island chain is one that surrounds, or is surrounded by a primary island chain). 

Though the FTLE plot makes it much harder to discern these structures, the locations of fixed 

points (e.g., O-points) where the flow is truly periodic can be seen in the small Lyapunov 

exponent values. In the Poincaré plot, shown in blue within the green region, are a series of 

islands that appear be to part of the stochastic region, in the FTLE plot. This difference can be 

attributed to the time scale selected for calculating the Lyapunov exponent, which was probably 

too long. 

 

Next, the enhanced Poincaré plot was constructed using the same seed points used for the 

standard Poincaré plot for Figure 3, Figure 5. Though not necessary, puncture points (opposed to 



Exploration of Periodic Low Fields 

ISFV18 – Zurich, Switzerland – 2018 5 

cross sectional profiles based on a small number of puncture points) are utilized in order to 

enable a more direct comparison to the Poincaré plot.  The enhanced Poincaré plot also clearly 

shows surfaces and islands chains in both the non-stochastic and stochastic regions.  Like the 

Poincaré plot, it too suffers from being difficult to disambiguate between adjacent surfaces due 

to the color mapping choice which is based on the ratio of the toroidal to poloidal periodicity. 

 

                              
Figure 3. A Poincaré plot for a steady, three-dimensional, Ekman-driven, rotating cylinder flow, 

colored based on the seed point’s unique identifier. 

 

However, unlike the Poincaré plot and the FTLE plot, the enhanced Poincaré plot contains the 

results of the trajectory analysis including the toroidal and poloidal periodicity as well as the 

correspondence between island chains. This correspondence allows approximate cross sectional 

profiles to be reconstructed by connecting neighboring puncture points into a series of line 

segments, Figure 6. The cross-sectional profile is approximate because a series of linear line 

segments are used. As a final step to demonstrate the utility of determining the correspondence 

between puncture points, the 2,1island chain and the quasi-periodic surface from Figure 2 (right) 

are reconstructed in 3D, Figure 8. This 3D reconstruction and coloring is based on the puncture 

point ordering and shows the twisting complexity of the surfaces. Such 3D reconstructions are 

not otherwise possible with images such as that in Figure 2 (right) being the norm. 

 

The second case presented is from a magnetic confinement fusion simulation of the dynamics of 

the major disruption of DIII-D discharge 87009 [1]. In this case, the magnetic field is represented 

as a time varying vector field with the instantaneous field being of interest. A Poincaré plot is fist 

constructed using 108 seed points (three lines of 36 points each) and clearly shows surfaces and 

islands chains in both the non-stochastic and stochastic regions, Figure 9 (left). The zoomed 
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Figure 4. The FTLE plot for same simulation in Figure 2 using a 400x400 grid of seed points 

and a 3D auxiliary grid color based on the largest Lyapunov exponent. 

 

                             
Figure 5. The enhanced Ponicaré plot for same simulation in Figure 2 colored based on the 

ratio of the toroidal to poloidal windings. 
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image shows even more details into the complexity of two different islands chains, Figure 9 

(right). The overall quality of the Poincaré plot demonstrates why such plots are the de facto 

standard for post-hoc analysis within the Fusion community.  

                 
Figure 6. An example of an enhanced Ponicaré plot for same simulation in Figure 2 with the 

major island chains identified along with the ratio of their toroidal to poloidal windings. Note: 

the labels were manually added to the plot based on the analysis results. 

 

  

 
Figure 7. An overlay of the enhanced Ponicaré plot onto the FTLE plot from Figure 4 showing 

the major island chains. Note: the labels were manually added to the plot based on the analysis 

results. 
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Figure 8. From Figure 2 (right) a three-dimensional surface reconstruction of the 2,1island 

chain labeled as "A" in Figure 6 (green-blue) and the quasi-periodic surface (yellow-red). The 

left perspective corresponds to the same perspective in Figure 2 (right). 

 

A FTLE plot was then constructed using a 913x1753 grid of seed points equally spaced 

throughout the domain in the X-Z plane using a 3D auxiliary grid comprised of six points placed 

symmetrically around each seed point. The resulting FTLE plot utilized 9.6M points with 66.7K 

integration steps, Figure 10. The FTLE plot clearly shows the stochastic regions as a noise 

pattern with many organized structures within it as well as the interior. Overall the quality of the 

plot is quite high but as noted the computational expense is also quite high, 1200 ranks were used 

over a 10 hour time period. 

 

Next, the enhanced Poincaré plot was constructed using 43 seed points (36 points from 

traditional Poincaré plot and seven additional points). This plot also clearly shows surfaces and 

islands chains in both the non-stochastic and stochastic regions, Figure 11.  Unlike the traditional 

Poincaré plot where a of series of points are used to infer the cross-sectional profile, the 

enhanced Poincaré plot analysis provides correspondence between puncture points which allows 

the cross-sectional profile of each surface to be represented as a series of line segments. This 

representation provides a cleaner visualization but in some cases at a cost when too few points 

are available to construct the line segment and results in long linear segments.  

 

We next overlay the enhanced Poincaré plot from Figure 11 (right) on to the FTLE plot from 

Figure 10 (right) and include the toroidal and poloidal periodicity of the trajectory analysis as 

well as label the island chains, Figure 12. For the 3,1island chain, it contains two secondary 

chains, 18,6 and 15,3, both of which have the same ratio as the 3,1island chain and how they are 

differentiated from rational and irrational surfaces. The final step again demonstrates the utility 

of the correspondence between puncture points by reconstructing three islands chains in 3D, 

Figure 13. 
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Figure 9.  A Poincaré plot of magnetic field from the major disruption of DIII-D discharge 

87009 colored based on the seed point ordering. The left image shows the complete plot, the 

right image shows a zoomed view of the lower inboard side. 

 

       
Figure 10. The FTLE plot for same simulation in Figure 9 using a 913x1753 grid of seed points 

and a 3D auxiliary grid colored based on the largest Lyapunov exponent. 
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Figure 11. The enhanced Ponicaré plot for same simulation in Figure 9 colored based on the 

ratio of the toroidal to poloidal windings. 

 

 

                                  
Figure 12. An overlay of the enhanced Ponicaré plot onto the FTLE plot with the island chains 

labeled. Island chains C and E are primary islands, while A, B, and, D are secondary islands. 

Note: the labels were manually added to the plot based on the analysis results. 
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Figure 13. A three-dimensional surface reconstruction of the two 2,1 island chains (red, yellow) 

and the 3,1 island chain (blue) labeled as "C" in Figure 12. 

Discussion 

Each of the three techniques presented provide similar and different details. The traditional 

Poincaré plots are computationally cheap and quickly provide useful information. Though 

computationally cheap, resources can be wasted because of duplicate puncture points that are 

generated from similar seed locations and excessive integration. Even with the sparse point 

density and the inherent discontinuous nature of such plots which may hide or otherwise make it 

difficult to perceive features, they are the de facto standard for periodic systems.  

 

FTLE plots on the other hand are computationally expensive to calculate. The FTLE images 

shown took on the order of hours utilizing 200-1000 processors running in parallel (the 

integration is embarrassingly parallel when the full domain can be loaded into memory on each 

processor). The number of integration steps is critical for visualizing features especially as the 

FTLE is being calculated for a steady state or instantaneous point in time. Despite these 

drawbacks their continuous nature is a highly desirable feature. 

 

The enhanced Poincaré plots lie between the traditional Poincaré plots and the FLTE plots. They 

are slightly more computationally expensive to generate than a traditional Poincaré plot, taking 

minutes rather than seconds to generate. Though not continuous they are not discrete either. Like 

the traditional Poincaré plot they can suffer from too few seed locations and missed features. 

However, because it is possible to reconstruct the cross-sectional profile by obtaining a series of 

line segments using techniques developed for streamline placement to obtain evenly spaced cross 

sections may be applicable [15]. However, unlike both the traditional Poincaré plot and FTLE 

plot the enhanced Poincaré plot contains a rich set of analysis data that can be utilized. Such 

analysis data goes beyond the data extracted from FLTE plots in [6] for limit cycles and shrink 

and stretch lines as it can be utilized for reconstructing surfaces and lends itself to being utilized 

within a running simulation. Though not shown, it has been our experience that the analysis 

performs well before the system becomes highly stochastic after which the analysis defaults to a 

traditional Poincaré plot output. 
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Finally, we should note that constructing the plots was an iterative process. That is because the 

tools were meant to be used interactively. For instance, the traditional and enhanced Poincaré 

plots were created as an initial visualization which were then explored in more detailed when 

features were found. Because of the computational expense, FTLE plots were generated for a 

small region of interest using the Poincaré plots a guide. Once an acceptable resolution and other 

parameters were found, a plot of the complete plane was generated. 

Conclusion 

As is often the case, no single technique achieves a holistic visualization of the flow field that 

would address all the needs of the analysis. In this work, we discussed the respective strengths 

and limitations of three visualization techniques for periodic flow phenomena and document the 

additional insight that can be gained from applying them in combination. 

References 

[1] S. Kruger, D. Schnack, and C. R. Sovinec. Dynamics of the major disruption of a diii-d plasma. Phys. Plasmas, 

12:56113, 2005. 

[2] L. Pratt, I. Rypina, T.M. Özgökmen, P. Wang, H. Childs and Y. Bebieva, “Chaotic advection in a steady, three-

dimensional, Ekman-driven eddy,“ Journal of Fluid Dynamics, 738, pp. 143-183, 2014. 

[3] H. Poincaré, Oeuvres de Henri Poincaré. Gauthier-Villars, Paris, 1934-65. 

[4] V. I. Arnold, “Proof of a Theorem of A.N. Kolmogorov on the Invariance of Quasiperiodic Motions Under 

Small Perturbations of the Hamiltonian.” Russ. Math. Surveys 18:5: pp. 9-36, 1963. 

[5] G. Haller and T. Sapsis. Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, 

CHAOS 21, 023115, 2011. 

[6] K. Onu, F. Huhn, & G. Haller, LCS Tool: A Computational platform for Lagrangian coherent structures, J. of 

Computational Science, 7 pp. 26-36, 2005. 

[7] A.R. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, J. Breslau. “Analysis of Recurrent Patterns in 
Toroidal Magnetic Fields,” In IEEE Transactions on Visualization and Computer Graphics, Vol. 16, No. 6, 

IEEE, pp. 1431-1440. Nov, 2010.  

[8] A.R. Sanderson, G. Chen, X. Tricoche, E. Cohen. “Understanding Quasi-Periodic Fieldlines and Their 

Topology in Toroidal Magnetic Fields,” In Topological Methods in Data Analysis and Visualization II, Edited 

by R. Peikert and H. Carr and H. Hauser and R. Fuchs, Springer, pp. 125--140. 2012.  

[9] X. Tricoche, C. Garth, A. Sanderson. “Visualization Invariant Manifolds in Area-Preserving Maps,” In 

Topological Methods in Data Analysis and Visualization II, Edited by R. Peikert and H. Carr and H. Hauser and 

R. Fuchs, Springer, pp. 109-124, 2012. 

[10] DIII-D "https://fusion.gat.com/global/diii-d/home". Retrieved May 1, 2018.  

[11] C.R. Sovinec, A.H. Glasser, D.C. Barnes, T.A. Gianakon, R.A. Nebel, S.E. Kruger, D.D. Schnack, S.J. 

Plimpton, A. Tarditi, M.S. Chu and the NIMROD Team, "Nonlinear Magnetohydrodynamics with High-order 

Finite Elements," Journal of Computational Physics, 195, 355 (2004). 

[12] FISCHER, P. F. 1997 “An overlapping Schwarz method for spectral element solution of the incompressible 

Navier–Stokes equations”. J. Comput. Phys. 133, 84–101. 

[13] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G. 

H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. R•ubel, M. Durant, J. M. 

Favre, and P. Navratil. VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High 

Performance Visualization - Enabling Extreme-Scale Scientific Insight, pages 357-372. CRC Press, Oct 2012. 

[14] D. Pugmire, H.Childs, C. Garth, S. Ahern, and G. Weber. 2009. “Scalable computation of streamlines on very 

large datasets”. In Proceedings of the Conference on High Performance Computing Networking, Storage and 

Analysis (SC '09). 

[15] Z. Liu, R. Moorhead, and J. Groner, “An Advanced Evenly-Spaced Streamline Placement Algorithm,”  IEEE 

Transactions on Visualization and Computer Graphics, 12(5):965-72. 

http://www.scholarpedia.org/article/Quasiperiodic_Oscillations
https://fusion.gat.com/global/diii-d/home
https://fusion.gat.com/global/diii-d/home
https://www.researchgate.net/publication/profile/Zhanping_Liu?_sg=IN3o7D3sGBtpmJYewN7h3pXxESTcAbZ2dnK90n7BA0ym0KwE6-0iqBjtFXNoIkNlIb5WW9k.zv3X5BBJ6oteX83Lutk8Ftel7leH9NxHLM7cMfL_hjlcKtAOIupfHshVMOEdoHahi3bwPAYr0tzG20mRJ1JW2A
https://www.researchgate.net/publication/profile/Robert_Moorhead?_sg=IN3o7D3sGBtpmJYewN7h3pXxESTcAbZ2dnK90n7BA0ym0KwE6-0iqBjtFXNoIkNlIb5WW9k.zv3X5BBJ6oteX83Lutk8Ftel7leH9NxHLM7cMfL_hjlcKtAOIupfHshVMOEdoHahi3bwPAYr0tzG20mRJ1JW2A


Exploration of Periodic Low Fields 

ISFV18 – Zurich, Switzerland – 2018 13 

Copyright Statement 

The authors confirm that they, and/or their company or institution, hold copyright on all the original material 

included in their paper. They also confirm they have obtained permission, from the copyright holder of any third-

party material included in their paper, to publish it as part of their paper. The authors grant full permission for the 

publication and distribution of their paper as part of the ISFV18 proceedings or as individual off-prints from the 

proceedings. 

 


	1 Introduction
	2 Methods
	Results
	Discussion
	Conclusion
	References
	Copyright Statement

