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Abstract—
The computation, visualization, and interpretation

of brain variability remains a significant challenge in
computational neuroanatomy. Current deformable
registration methods can generate, for each vertex of a
polygonal mesh modeling the cortical surface, a distri-
bution of displacement vectors between the individual
models and their average, which can be summarized
as a covariance tensor. While analysis of anatomi-
cal covariance tensor fields promises insight into the
structural components of aging and disease, basic un-
derstanding of the tensor field structure is hampered
by the lack of effective methods to create informative
and interactive visualizations. We describe a novel
application of superquadric tensor glyphs to anatomic
covariance tensor fields, supplemented by colormaps
of important tensor attributes. The resulting visual-
izations support a more detailed characterization of
population variability of brain structure than possi-
ble with previous methods, while also suggesting di-
rections for subsequent quantitative analysis.

Keywords— Visualization, Brain Modeling, Covari-
ance Analysis, Software Tools, Computer Graphics
Software

I. Introduction

The quest to understand the anatomic variabil-
ity of the human brain is important for three major
applications in neuroscience. First, the functional or-
ganization of the brain differs widely across subjects,
and measures are required to represent and visual-
ize systematic patterns. A related application is to
determine patterns of altered brain structure in dis-
eases such as Alzheimer’s, dementia, and schizophre-
nia, based on databases of brain scans. Finally, sta-
tistical information on anatomical variance is ben-
eficial for computer visions algorithms that aim to
identify and label specific brain structures automat-
ically. Visualization is an essential component of
understanding anatomic variability. Effective visu-
alizations provide feedback for verifying the various
algorithmic steps in computing variability, and offer
flexible means of displaying and interacting with the
data so as to form and refine hypothesizes about the
structure and origins of anatomic variability.

This work represents anatomic variability as a field
of covariance tensors over the cortical surface. In
general, the challenge of tensor visualization is to
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convey the properties of individual tensor samples,
as well as the large-scale spatial structure of changes
in the tensor attributes, in such a way that does not
overwhelm the viewer with an unintelligible mass of
information. When visualizing covariance data com-
puted from deformable registration of cortical surface
models, we require the ability to inspect the degree
and type of population variance at particular loca-
tions of interest on the cortical surface (such as the
language areas of the brain in Alzheimer’s disease),
as well as the means of discerning overall patterns
of variation that may represent novel indicators for
biologically significant subpopulation characteristics.

This paper explores the combination of su-
perquadric tensor glyphs and judicious application
of colormaps to display individual tensors and the
spatial structure of the tensor field, respectively.
Glyphs, or icons, depict multiple data values by
mapping them onto the shape, size, orientation,
and surface appearance of a base geometric primi-
tive [1]. Tensor glyphs generally indicate the ten-
sor eigenvalues and eigenvectors by their scaling
(shape) and orientation, respectively [2], as with
the ellipsoidal glyphs commonly used to present dif-
fusion tensor MRI data [3]. The limited previous
work in visualizing anatomic covariance tensor fields
employed nested semi-transparent ellipsoidal glyphs
corresponding to a small set of confidence limits [4].

II. Methods

Fig. 1. Cortical surface models are extracted from MRI scans
(a). On individual models, 3D parametric curves are man-
ually traced to represent 72 sulcal landmarks (some shown
in (b), defined in [7]), which in turn constrain the elastic
deformation for cortical pattern matching.

The anatomic covariance tensors are generated
from a non-linear pattern matching procedure pre-
sented in previous work [5], [6], [7]. MRI brain scans
of 40 young healthy normal subjects were aligned
with the ICBM-305 standardized brain with a 9-
parameter affine transform, using established meth-



ods [5], [7]. The aligned brains were then converted
to 3D parametric models by smoothly deforming a
high-resolution mesh to the MRI isosurface of the
brain boundary, Fig 1(a). The major fissures in the
brain surface, termed sulci and identified in Fig 1(b),
have the same topology in all subjects. This enables
cortical pattern matching to quantify the anatomic
differences of interest as the minimum-energy 3D
nonlinear elastic deformation that transforms the
sulcal landmarks of an average model template onto
those of each individual [7]. Anatomic variability
is represented at each point on the average cortical
mesh as the 3D covariance tensor of the displacement
vectors induced by the deformations from the aver-
age to all individuals (after factoring out the affine
components of the initial alignment).

A 3×3 covariance tensor T can be diagonalized as
T = RΛΛΛR−1 where ΛΛΛ is a diagonal matrix of eigen-
values and R is a rotation matrix that transforms the
standard basis onto the eigenvector basis. Glyph-
based tensor visualization transforms a base glyph
geometry, G (typically a sphere), into a tensor glyph,
GT (typically an ellipsoid), by GT = RΛΛΛG . Fig. 2(a)
illustrates the space of tensor shapes with ellipsoidal
glyphs, and shows how different tensor shapes can
unfortunately present similar appearances. In con-
trast, superquadric glyphs reduce visual ambiguity
and enhance the depiction of tensor structure.

We will now briefly summarize the superquadric
glyph method presented in previous work [8]. Su-
perquadric surfaces, shown in Fig. 2(b), are a con-
tinuum of shapes created by modifying the standard
(θ, φ) parameterization of the sphere with two expo-
nential parameters (α, β) [9]:

p(θ, φ) =




cosα θ sinβ φ

sinα θ sinβ φ
cosβ φ


 ,

0 ≤ θ ≤ 2π
0 ≤ φ ≤ π

(1)

where xα = sgn(x)|x|α. The general strategy of
superquadric tensor glyphs is that edges indicate
eigenvalue differences. Mathematically, a difference
in eigenvalues implies lack of rotational symmetry,
which we visually emphasize by an edge on the glyph
surface, which in turn more clearly indicates the ori-
entation of the associated eigenvectors. When two
eigenvalues are equal, the numerical indeterminacy of
the associated eigenvectors is conveyed in the glyph
with a circular cross-section. Fig. 2(c) demonstrates
advantages of superquadrics over ellipsoids for de-
picting the range of tensor shapes.

The other component of our visualization method
is the use of color scales, or colormaps, to indicate
various attributes of the covariance tensors. This
helps present large-scale patterns in the data. We
also show the utility of conveying two tensor at-
tributes simultaneously, by applying different maps
on the mesh surface and on the tensor glyphs. Im-
portant attributes of the covariance tensor T include:
• ‖T‖F =

√
tr(TTT): The Frobenius norm

• FA(T): The fractional anisotropy, borrowed from
the diffusion-tensor MRI literature [10]
• skew(λi): For eigenvalues λ1 ≥ λ2 ≥ λ3, this varies
between −1/

√
2 when λ1 ≥ λ2 = λ3 and 1/

√
2 when

λ1 = λ2 ≥ λ3, corresponding to linear (prolate) and
planar (oblate) shapes, respectively.
In intuitive terms, ‖T‖F indicates the overall amount
of variability, FA(T) indicates the extent to which
the variability extends more in some directions than
others (as opposed to being spherical or wholly ro-
tationally symmetric), while skew(λi) indicates the
type or shape of the anisotropy (the precise manner
in which it differs from a sphere).

Additionally, the fraction of variability perpendic-
ular to the cortical surface, which we term surface-
normal variance, is an important aspect of the co-
variance tensor, as it indicates regional differences in
brain shape that may be relevant for understanding
degenerative disease, cortical dysplasias, or subtle
abnormalities of cortical shape. We compute surface-
normal variance as nTTn/‖T‖F : the tensor contrac-
tion of covariance T along surface normal n, normal-
ized by Frobenius norm to vary between 0 and 1.

For visualization purposes, the field of covariance
tensors was linearly downsampled by a factor of four,
because individual glyphs must be large enough to
see in the overall context of the cortical mesh, and
because the covariance tensors do not change signif-
icantly within the span of a few mesh nodes. The
glyphs were drawn slightly offset from the underly-
ing mesh surface to better reveal the tensor attribute
mapped onto the cortical surface.

We have developed the tensor visualization meth-
ods described here within BioPSE, a freely available
integrated problem solving environment for the inter-
active investigation of large-scale scientific data [11].
The visualization algorithms have been implemented
with modules in a reconfigurable dataflow network,
thereby facilitating the exploration of different pa-
rameters and techniques.

III. Results

Fig. 3 demonstrates the difference between ellip-
soid and superquadric glyphs on the medial side of
the temporal lobe. Features that are better seen with
the superquadrics include the concentration of pla-
nar shapes directly above the collateral sulcus, and
the fact that glyphs with a planar orientation are
generally tangential to the underlying surface.

Fig. 4 shows a combination of different attributes
indicated on and beneath the field of superquadric
glyphs. The most striking feature of the visual-
izations is that cortical areas with highest variabil-
ity (as indicated by FA(T)) are those that devel-
oped most recently during human evolution, namely
higher-order association areas and language cortex.
Conversely, primary sensory and motor regions of
the cortex are the least variable. The fractional
anisotropy of variance is greatest in those brain re-
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Fig. 2. Ellipsoidal glyphs (a) suffer from visual ambiguity. The range of superquadrics (b) used for tensor glyphs is highlighted
with the gray triangle. Superquadric glyphs (c) differentiate shape and convey orientation more clearly than do ellipsoids.

‖T‖F

Fig. 3. Comparison of ellipsoid (top) and superquadric (bot-
tom) glyphs, colormapped with ‖T‖F .

gions that are asymmetrical (i.e. differ between left
and right hemispheres), suggesting that strongly di-
rectional processes may occur during their formation.

The eigenvalue skew (b) differs markedly between
temporal and parietal cortex on the lateral surface
of the brain hemispheres, suggesting that most of
the non-normal variance near the Sylvian fissure is
relatively isotropic within the cortical sheet, but this
variance becomes strongly concentrated along one di-
rection in the parietal lobe, which is formed later in
embryonic development. These principal directions
of variance clearly vary by brain region, as expected
from the different times of emergence of the fissures
during fetal life. This cortical subdivision may help
define the anatomical scope of genes that regulate
brain fissuration. Sensorimotor regions are distin-
guished by their relatively low variance and their nor-

mal component of variance is relatively high [yellow
colors, (c)], suggesting that these are the only struc-
tures whose tangential variability is well accommo-
dated by a linear transformation to stereotaxic space.

IV. Discussion and Conclusion

The visualization method presented here is an im-
portant step in characterizing anatomic variability in
the brain. Visualizing anatomic covariance tensors,
both individually and as a group, illustrates the ba-
sic modes of anatomic variation and motivates new
studies to better understand its origins. In light of
the hypothesis that sulcus formation is a consequence
of tension along white matter tracts [12], future work
will seek to display and quantify the directional rela-
tionships between between anatomic variability and
underlying diffusion tensor scans. The visualizations
presented here are geared towards exploration of the
tensor values themselves, but additional visualiza-
tions can extract or quantify higher-order tensor field
structure, for example hyperstreamlines [13] or topo-
logical analysis [14].

References

[1] F. Post, F. Post, T. van Walsum, and D. Silver, “Iconic
techniques for feature visualization,” in Proc. IEEE Vi-
sualization 95, pp. 288–295, 1995.

[2] R. Haber and D. McNabb, Visualization Idioms: A
Conceptual Model for Scientific Visualization Systems,
pp. 74–93. IEEE, 1990.

[3] P. Basser, J. Mattiello, and D. L. Bihan, “MR diffusion
tensor spectroscopy and imaging,” Biophysics Journal,
vol. 66, no. 1, pp. 259–267, 1994.

[4] P. Thompson and A. Toga, “Detection, visualization and
animation of abnormal anatomic structure with a de-
formable probabilistic brain atlas based on random vec-
tor field transformations,”Medical Image Analysis, vol. 1,
no. 4, pp. 271–294, 1997.

[5] J. Mazziotta, A. Toga, and A. E. et al., “A probabilistic
atlas and reference system for the human brain,” Journal
of the Royal Society, vol. 356, pp. 1293–1322, Aug. 2001.

[6] P. Thompson, M. Mega, C. Vidal, J. Rapoport,
and A. Toga, “Detecting disease-specific patterns of
brain structure using cortical pattern matching and a
population-based probabilistic brain atlas,” in Proc. 17th
International Conference on Information Processing in
Medical Imaging (IPMI2001), pp. 488–501, June 2001.

[7] P. Thompson, K. Hayashi, G. de Zubicaray, A. Janke,



FA
‖T‖F

(a) Fractional anisotropy colormapped on glyphs, Frobenius norm on cortical surface

FA
skew(λi)

(b) Eigenvalue skew colormapped on glyphs, fractional anisotropy on cortical surface

nTTn/‖T‖F
‖T‖F

(c) Surface-normal variance colormapped on glyphs, Frobenius norm on cortical surface

Fig. 4. Sequence of quantities colormapped on superquadric glyphs, with gray-scale indication on the underlying mesh surface.

S. Rose, J. Semple, D. Herman, M. Hong, S. Dittmer,
D. Doddrell, and A. Toga, “Dynamics of gray matter loss
in Alzheimer’s disease,” Journal of Neuroscience, vol. 23,
pp. 994–1005, Feb. 2003.

[8] G. Kindlmann, “Superquadric tensor glyphs,” in Proc.
IEEE TVCG/EG Symposium on Visualization 2004,
pp. 147–154, May 2004.

[9] A. Barr, “Superquadrics and angle-preserving transfor-
mations,” IEEE CG & A, vol. 18, no. 1, pp. 11–23, 1981.

[10] P. Basser and C. Pierpaoli, “Microstructural and phys-
iological features of tissues elucidated by quantitative-
diffusion-tensor MRI,” Journal of Magnetic Resonance,
Series B, vol. 111, pp. 209–219, 1996.

[11] BioPSE: Problem Solving Environment for model-
ing, simulation, and visualization of bioelectric fields.
Scientific Computing and Imaging Institute (SCI),
http://software.sci.utah.edu/biopse.html, 2002.

[12] D. V. Essen, “A tension-based theory of morphogenesis
and compact wiring in the central nervous system,” Na-
ture, vol. 385, pp. 313–318, Jan. 1997.

[13] T. Delmarcelle and L. Hesselink, “Visualizing second-
order tensor fields with hyper streamlines,” IEEE CG &
A, vol. 13, no. 4, pp. 25–33, 1993.

[14] L. Hesselink, Y. Levy, and Y. Lavin, “The topology of
symmetric, second-order 3D tensor fields,” IEEE TVCG,
vol. 3, Jan–Mar 1997.


