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Abstract—The usual goal in inverse electrocardiography (ECG)
is to reconstruct cardiac electrical sources from body surface
potentials and a mathematical model that relates the sources to
the measurements. Due to attenuation and smoothing that occurs
in the thorax, the inverse ECG problem is ill-posed and imposition
of a priori constraints is needed to combat this ill-posedness. When
the problem is posed in terms of reconstructing heart surface
potentials, solutions have not yet achieved clinical utility; limita-
tions include the limited availability of good a priori information
about the solution and the lack of a “good” error metric. We
describe an approach that combines body surface measurements
and standard forward models with two additional information
sources: statistical prior information about epicardial potential
distributions and sparse simultaneous measurements of epicardial
potentials made with multielectrode coronary venous catheters.
We employ a Bayesian methodology which offers a general way to
incorporate these information sources and additionally provides
statistical performance analysis tools. In a simulation study, we
first compare solutions using one or more of these information
sources. Then, we study the effects of varying the number of sparse
epicardial potential measurements on reconstruction accuracy.
To evaluate accuracy, we used the Bayesian error covariance
as well as traditional error metrics such as relative error. Our
results show that including even sparsely sampled information
from coronary venous catheters can substantially improve the
reconstruction of epicardial potential distributions and that a
Bayesian framework provides a feasible approach to using this
information. Moreover, computing the Bayesian error standard
deviations offers a means to indicate confidence in the results even
in the absence of validation data.

Index Terms—Bayesian estimation, forward/inverse modeling,
inverse electrocardiography, inverse problems.

I. INTRODUCTION

I N INVERSE electrocardiography (ECG), one seeks to re-
construct cardiac electrical source distributions from body

surface potentials [1], [2]. Despite many years of progress, suc-
cessful clinical applications have been very rare. One basic lim-
itation of these inverse solutions is the relatively low level of in-
formation about the cardiac sources present in the body surface
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potentials, due to attenuation and smoothing in the thorax. If we
could acquire and make effective use of additional information
sources, either general to an entire class of inverse problems or
specific to the individual subject, it might help to achieve more
accurate and more reliable inverse reconstructions than are oth-
erwise possible. Clinicians make qualitative use of this strategy
by combining body-surface ECGs with catheter-based electrical
measurements to improve localization of ectopic activation or
reentrant arrhythmias [3], [4]. The use of this information in
a quantitative inverse solution is, however, an unexplored ap-
proach that we have addressed in this paper.

In this paper, we describe and evaluate an approach to epicar-
dial potential-based inverse electrocardiography that combines
body surface measurements and standard forward models with
two additional information sources: statistical prior information
about epicardial potential distributions estimated from a data-
base of previous recordings and measurements of a small subset
of the epicardial potentials made simultaneously with the torso-
surface potential measurements through multielectrode coro-
nary venous catheters.

To include this additional information, we have adopted a
Bayesian framework because of the flexibility it provides in in-
corporating the three types of information sources we wished to
study. The Bayesian framework achieves stable solutions via a
statistical model for the unknown potentials, in contrast to the
most common approach to solve for inversely computed epi-
cardial potentials, which uses a deterministic model for the un-
known potentials [5], [2]. Using deterministic models requires
some form of regularization, most commonly in the Tikhonov
framework [6], [7], to stabilize the solution against the very
large and oscillatory reconstructed potentials caused by the ill-
posed nature of the problem. In the simplest cases, Bayesian and
Tikhonov solutions turn out to be equivalent, but in more com-
plex scenarios they lead to distinct algorithms.

One additional advantage of the Bayesian formulation is the
availability of performance analysis tools to statistically charac-
terize solutions. The most common of these tools is the Bayesian
error covariance, which gives a quantitative measure of the sta-
tistical reliability of a solution. It depends only on the mathemat-
ical formulation of the problem (here, the forward model, mea-
surement geometry, etc.) and the probability model assumed for
the sources and noise. It is not an a posteriori error metric such
as relative error, which depends on specific measurements and
on knowledge of the actual solution; rather, it is a statistical av-
erage or “prediction” quantity. In a companion study [8], we
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studied the feasibility of using the theoretical error covariance
values in place of the actual error covariance values calculated
from the error between the original potentials and the solutions.
In this paper, we present examples to illustrate that the Bayesian
error covariance can be used effectively to predict the perfor-
mance we actually achieve using combinations of information
sources, and that it may correspond more accurately to visual
examination of reconstruction accuracy than does, for example,
average relative error.

We have followed the lead of previous researchers [9]–[11]
by adopting a Gaussian model for the unknown epicardial po-
tential distributions as well as for the measurement noise and
assuming that the potentials and the noise are mutually uncorre-
lated. In the Gaussian model, the prior probability density func-
tion and the measurement conditional probability densities can
each be specified with a mean vector and a covariance matrix.
Early investigation of Bayesian inverse electrocardiography by
Martin et al. [9] showed the feasibility of applying statistical
constraints to the epicardial potential distribution over a sphere
with a radius of 4 cm surrounding the heart. The epicardial po-
tentials were simulated from an activation sequence, and the
mean vector and the covariance matrix were estimated from
these simulated epicardial potentials using temporal averaging
and Monte Carlo sampling. Barr et al. used a simplified proba-
bility model, assuming that the epicardial potentials were zero
mean, mutually independent, and identically distributed (i.i.d.),
resulting in a diagonal covariance matrix with entries equal to
the epicardial potential power [10]. The measurement noise was
also assumed to be i.i.d. and appropriate variance values were
used for the epicardial potentials and measurement noise. This
Bayesian formulation is equivalent to zero-order Tikhonov reg-
ularization, with the regularization parameter [ in (6) and (7)]
equal to the ratio of the variance of the torso measurement noise
to the variance of the (unknown) epicardial potentials.

More recent simulation studies conducted by van Oosterom
[12], [13] showed that when there is good a priori information
available about the epicardial potentials, in the form of a rea-
sonably accurate full spatial covariance matrix, Bayesian esti-
mation recovers considerable detail in the epicardial potential
maps. Like Martin et al., van Oosterom obtained the covariance
matrix from simulated epicardial potentials. A related statistical
approach proposed by Greensite [11], [14] combined temporal
and spatial constraints to estimate temporal and spatial covari-
ances under certain specific assumptions about structures in-
herent in the problem formulation. All of these methods con-
cluded that using appropriate prior models, one can improve
accuracy and reliability of inverse solutions, thus providing the
motivation for our studies. None of these studies, however, have
made use of the additional information that venous catheters can
provide in order to formulate an inverse solution approach.

The use of error metrics based on statistical assumptions
has a recent history in the inverse bioelectric field literature.
Reports in inverse electroencephalography (EEG) and magne-
toencephalography (MEG) describe approaches that employ
statistical estimation methods to perform error analysis using
Cramer–Rao bounds [15]–[17] and Bayesian methods [18]. In
the latter study, Russell et al. employed a Bayesian estimation

framework in a simple scenario with uncorrelated sources and
found Bayesian performance analysis tools to be useful. These
results motivated the use of the Bayesian estimation error
covariance in this study for the inverse electrocardiography
problem, in which the statistical model is more complicated
due to spatial correlation of the sources. For simplicity, we
ignored temporal correlation of the sources in this paper.

Of the two types of additional information we studied, in-
corporating previously recorded data to estimate prior statistics
posed no new technical data acquisition problems. However, the
use of epicardial venous catheters is still emerging and evolving.
Recent advances in catheter technology allow the use of mul-
tiple venous catheters, each containing up to 16 electrodes, to
map regions of the epicardial surface of the heart [19]–[21].
Previous studies showed that signals from such catheters were
very similar to those recorded from nearby sites on the heart
surface [22], thus allowing the simulation of catheter record-
ings with epicardial electrode recordings. These simulated ve-
nous catheter measurements have been used in previous studies
together with a statistical prior estimated from previous epicar-
dial recordings, in an ad hoc fashion, to estimate high resolu-
tion activation and/or potential maps of the complete epicardium
[22]–[25].

In this paper, we formalized and broadened the statistical
framework to include both estimation from limited epicardial
lead sets and a combination of inverse solution and statistical es-
timation approaches. We compared the performance of the dif-
ferent combinations under experimental conditions and evalu-
ated a statistical metric of uncertainty that offers quantitative es-
timates of the quality of the inverse solutions without knowledge
of the actual solution. We also evaluated the effects of varying
the number of epicardial leads included in the inverse solution
and found that even small numbers of these signals substantially
improved the accuracy of the solution.

II. PROBLEM DEFINITION

A. Torso Potentials and Forward Model

The forward model relates torso potentials to epicardial po-
tentials and contains implicit information about the geometry of
the epicardium and the body surface as well as the conductivity
of the intervening volume conductor. The forward solution is
a matrix , that linearly relates the epicardial potentials to the
torso potentials according to

(1)

where is an vector of torso potentials at time instant
, is the associated vector of epicardial potentials,

is the matrix representing the forward solution,
is measurement noise of the same dimension as , and and

are the discrete time index and the number of time samples,
respectively.

In this paper, we ignore the temporal correlation of the epi-
cardial potentials. It has been well established [2], [11], [14]
that this is suboptimal. However, we choose here to concentrate
on the use of the spatial covariance without the complications
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that would be introduced if spatio-temporal covariance were in-
cluded.

B. Sparse Epicardial Potentials

We denote the sparse epicardial potentials (SEP) measure-
ments available via unipolar electrodes (leads) on venous coro-
nary catheters at ( ) locations as . For conve-
nience, we organize and such that the first elements of

correspond to measured leads, and the first columns of
are the coefficients that multiply these measured values of ,

i.e., and (where subscripts
and represent “measured” and “unmeasured” leads, respec-

tively, and superscript denotes matrix transpose). To take into
account noise in these epicardial measurements, we write

(2)

where is the appropriately sized vector of noise components
in the SEP measurements.

C. Augmented Formulation

To include such sparse epicardial potentials into the inverse
problem formulation, we replace the problem defined by (1)
with a formulation that combines (1) and (2)

(3)

where

and (4)

and solve this augmented inverse problem for .

D. Basic Statistical Assumptions

We make the following basic assumptions about the unknown
epicardial potentials and the two measurement noise vectors

and .
1) , where

and

2) . We further assume that is i.i.d. (i.e.,
) and uncorrelated with .

3) . is also i.i.d. (with ) and
uncorrelated with both and .

E. Estimation of Prior Density

The statistical approaches we applied require an accurate
prior probability density for the epicardial potential distribution,
in this case defined as a mean vector and covariance matrix

, even in the absence of specific knowledge of the solution.
To create the prior, we assume availability of a training set of

previously measured epicardial potentials from which we first
extract the QRS intervals from each beat. Let denote
the space–time matrix for the epicardial potentials
from the QRS of beat , , where is the total
number of beats included in the training set. For consistency,
we arrange the training data so that the first rows of each

contain the signals from the catheter-measured leads.
Then, the training dataset is defined as

(5)

where is of size and .
The sample mean and covariance can then be estimated from
this training dataset by averaging over time.

In this formulation, we described the general approach used
to estimate the parameters of the prior density. Specific details
of the training set composition for the studies presented here can
be found in Section IV.

III. METHODS

A. Solution Approaches

In this section, we present deterministic and stochastic so-
lution approaches that use one or more of the available infor-
mation sources. Unlike the deterministic approaches such as
Tikhonov regularization, in the Bayesian approach the epicar-
dial potential distribution is assumed to be random. In the well-
known Bayesian maximum a posteriori (MAP) estimation, the
solution is chosen to maximize the posterior distribution of the
sources given the measurements. The effect of this maximiza-
tion is to choose the solution that is the most probable one in the
sense of both being consistent with our prior probability model
of how such solutions behave and the particular data and for-
ward model for an individual measurement. With the statistical
assumptions used here (i.e., for the Gaussian case), the MAP
estimation is optimal both in the Bayesian sense (because it is
the conditional mean of the sources given the measurements)
and also in the sense of the minimum mean square error esti-
mate (MMSE). For consistency with previous reports in this area
[12], [13], we employ the designation MAP to describe these
methods. A more detailed explanation of the Bayesian MAP ap-
proach can be found in [8].

We studied the following combinations of information
sources (summarized in Table I).

1) Only torso potentials. The corresponding method is
Tikhonov regularization (TIKH).

2) Torso and sparse epicardial potentials together. We call this
approach Tikhonov regularization using sparse epicardial
potentials (TIKH-SEP).

3) Torso potentials and a prior from the training set together
in Bayesian MAP estimation (MAP).

4) All three available information sources together. Again, we
used Bayesian estimation and called this approach MAP
using sparse epicardial potentials (MAP-SEP).
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TABLE I
SUMMARY OF APPROACHES TO INCLUDE AVAILABLE INFORMATION SOURCES

WITH TORSO MEASUREMENTS (TOR), SPARSE EPICARDIAL MEASUREMENTS

(SEP), AND PRIOR STATISTICS ESTIMATED FROM DATABASE (PRI). CELL WITH

“+” SIGN MEANS THAT INFORMATION SOURCE OF THAT COLUMN IS USED

IN METHOD OF THAT ROW

5) Only the sparse epicardial potentials and the prior from
the database, without the torso potentials. The asso-
ciated method, which we called epicardial estimation
(EPI-EST), used a Bayesian framework, but without torso
potentials it was not an inverse solution.

1) Torso Data Only: Tikhonov Regularization (TIKH): When
we used only the torso measurements and a forward model, but
no additional information sources, we solved (1) using zero-
order Tikhonov regularization [5]

(6)

Regularization parameters for this and the following
Tikhonov solutions can be chosen by any of the many methods
available in the literature [26]; in this paper, we have used the

-curve method.
2) Torso Data and Sparse Measurements Only: Tikhonov

Regularization Using SEP (TIKH-SEP): When we simply
added the information from the sparse epicardial measurements
without the prior statistical model estimated from the database,
we solved (3) using the same Tikhonov method, but applied to
the augmented problem

(7)

3) Torso Data and Training Set: Bayesian MAP Estimation:
If we included the prior covariance model estimated from the
database, but not the sparse epicardial measurements, we again
solved (1), but this time using a Bayesian MAP approach. In a
slightly more flexible formulation than that proposed by others
[12], [13], we assumed the epicardial potentials to be Gaussian
but did not require a zero mean and were able to write for the
MAP solution [8]

(8)

The source of estimates for the mean and covariance came from
the database of measured epicardial potentials.

4) All Three Information Sources: MAP Estimation Using
SEP (MAP-SEP): When we included all three information
sources, the resulting MAP estimation became

(9)

where is the covariance matrix of the augmented noise
vector

5) No Torso Data: Epicardial Estimation (EPI-EST): For
completeness, we considered the case in which we used sparse
epicardial measurements and a prior from a database, but no
torso measurements (and no forward model). This method is an
adaptation of the activation time estimation algorithm in [22]
to estimate epicardial potentials. Such an approach does not
involve an inverse solution, but from the viewpoint of under-
standing the role of information sources it provided a relevant
comparison with the true inverse solutions. The probability
model follows Section II-D, but here we estimated only the
unmeasured leads, given the sparse epicardial measurements
and a prior model. To be consistent with the partitioning of
into and , we partitioned the solution vector also into
two parts: . Then, we set exactly equal to
and calculated using the Bayesian MMSE estimate, which
is equal to the posterior mean

(10)

where is the covariance matrix of .
We stated earlier that under the statistical assumptions of this

paper, the MMSE is also the MAP estimate. Thus, similarly to
the previous two Bayesian approaches, the epicardial estimation
method is also a MAP solution that uses the same prior density
but a different measurement model.

B. Error Measures

A major difficulty in deciding which solution approach (i.e.,
which information source combination) provides the best results
is to determine the most appropriate error metric with which
to evaluate success. In this paper, we use the Bayesian error
covariance matrix as the main evaluation tool for the Bayesian
methods. We also include traditional error metrics, relative error
and qualitative comparison of potential distributions, to evaluate
the quality of the results.

1) Bayesian Error Maps: The Bayesian MAP reconstruction
is unbiased under the Gaussian assumptions [27]. Therefore,

the estimation error has zero mean and its covariance matrix is

(11)

Each diagonal element of this error covariance matrix gives
the variance of the error in the estimate of the epicardial poten-
tial of the corresponding lead, i.e.,

(12)

where and are the th elements of and , respectively,
and is the th diagonal element of . Using this vari-
ance and the Bayesian MAP solution, one can calculate confi-
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dence intervals for the estimate [8]. For example, with 95%
probability the true solution at lead lies within the range

(13)

In order to observe these confidence intervals over the surface
of the heart, we generated error standard deviation prediction
maps by taking the square root of the diagonal entries of the
error covariance matrix of (11) and mapping these values to their
corresponding lead locations on the heart surface. The larger
the error standard deviation values in a region, the wider the
confidence intervals, meaning that we can expect less reliable
estimation in that region.

2) Traditional Methods of Error Assessment: We used three
additional methods to assess the error between reconstructed
and original maps. The first was qualitative analysis of the epi-
cardial maps using the visualization program map3d [28] to
show shading and isopotential contours. The second and the
third were calculations of relative error and correlation coeffi-
cient

RE (14)

CC (15)

where is the time index and is the lead number. RE and
CC are, respectively, the average relative error and the average
correlation coefficient over the entire heart beat.

C. Simulation Experiments

To test our solution approaches for epicardial potential es-
timation under realistic conditions, we simulated torso surface
and sparse epicardial potentials with canine epicardial measure-
ments from two types of experiments performed at the Nora
Eccles Harrison Cardiovascular Research and Training Institute
at the University of Utah. In in situ experiments, the heart re-
mained in the animal, exposed through a mid-sternal opening
and suspended in a pericardial cradle. In isolated heart experi-
ments, a preparation described previously [29] was used, con-
sisting of an isolated dog heart suspended in a torso-shaped in-
strumented electrolytic tank. Our data came from experiments
in which the heart was paced from the left or right ventric-
ular epicardium. In both preparations, epicardial potentials were
recorded simultaneously at 1000 samples/s from 490 epicardial
sock electrodes sewn into a flexible nylon stocking fitted over
the ventricles. Signal preprocessing consisted of gain correction
of all channels, windowing of single beats of interest, then linear
baseline adjustment of each signal using customized software.

We computed all the forward solutions for these studies
from a homogenous torso geometry that included the epicardial
sock electrodes (490 nodes and 976 triangles) and the torso
tank (771 nodes and 1254 triangles). The forward solution
used a boundary element formulation based on the method
of Barr et al. [30] modified to use linear elements [31]. To

mimic realistic measured potentials, we added independent,
zero mean, Gaussian distributed noise at 25-dB signal-to-noise
ratio (SNR) to the computed forward solutions. We chose this
SNR value since it was approximately what we observed in
true body surface recordings. To simulate the catheter mea-
surements ( ), we first selected the sock leads that lay over
the four major coronary veins [22], then added independent,
zero mean, Gaussian-distributed noise to these selected leads
at 30-dB SNR. Again, this SNR value was approximately what
we observed in the true catheter recordings.

We simulated catheter measurements for three different lead
numbers, , , and . Coverage achieved
by the measurement locations was the same for all cases, but the
sparsity of these locations varied with the number of measured
leads.

IV. RESULTS

We present two sets of results. The first is a comparison of
all the solution methods described in Section III-A, while the
second includes only the two methods that employ the Bayesian
MAP approach (i.e., MAP and MAP-SEP), with variable num-
bers of sparse epicardial measurements. For both sets of results,
we first present the Bayesian error standard deviation predic-
tion of reconstruction variability (that is, the error covariance
maps), then present the actual inverse-computed solutions. The
error covariance maps, of course, can only be calculated for the
Bayesian methods, so the Tikhonov solutions and the Bayesian
solutions are compared with each other only using the tradi-
tional error metrics.

We ran our algorithms on various test beats from experiments
with different animals, using different pacing locations, etc.,
using various training sets. In this paper, we show one typical
example of these results; the data used for testing came from
a left ventricularly (LV) paced test beat from an isolated heart
experiment as described previously. The training set used for es-
timating prior statistics for the Bayesian methods included ten
LV-paced beats (paced from five different sites located at the an-
terosuperior, posterolateral, and inferior LV regions) from two
different experiments, one in situ and one in an isolated heart.
The test beat came from an experiment (i.e., experimental an-
imal) that was not included in the training set.

A. Comparison of All Solution Approaches

For this comparison of epicardial potential reconstructions,
we set the number of sparse epicardial leads (less
than 10% of the number of nodes to be reconstructed), aligned
along the major coronary veins. Regularization parameters for
all Tikhonov approaches were determined using the -curve
method [7].

1) Error Maps: Fig. 1 shows the error standard deviation pre-
diction maps corresponding to the three Bayesian approaches,
EPI-EST, MAP, and MAP-SEP, presented as two different
views of the same heart model. In these maps, light regions cor-
respond to smaller standard deviations and dark regions to larger
standard deviations. The color map range is the same for each
map in Fig. 1 and the “isostandard deviation” contours were
evenly spaced between 0 and 5 mV (maximum error standard
deviation values corresponding to MAP and MAP-SEP are 5.33
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Fig. 1. Error standard deviation maps corresponding to three Bayesian
methods, MAP, MAP-SEP, and EPI-EST. Top and bottom panels show dif-
ferent views of heart.

and 4.09 mV, respectively). The true maxima of error standard
deviation values corresponding to EPI-EST were higher than
shown here (approximately equal to 10 mV); for better visibility
of MAP and MAP-SEP error maps, we clipped the scale on the
EPI-EST maps.

We observed the following from the results.
1) The methods that used sparse epicardial measurements,

i.e., EPI-EST and MAP-SEP, had much smaller predicted
error standard deviation values around the measurement
sites than in regions away from these sites.

2) EPI-EST produced very large error standard deviation
values (much larger than those of MAP or MAP-SEP)
away from the measurement sites.

3) The error standard deviations for the MAP-SEP recon-
struction were, in general, smaller than those of the MAP
reconstruction, even in the regions where there were no epi-
cardial measurement leads.

2) Epicardial Potential Reconstructions: Isopotential maps
of the original epicardial potentials and various solutions at
three time instants are shown in Fig. 2. The figure has three
panels from top to bottom, each corresponding to a different
time sample, as noted, relative to the time of stimulus delivery.
Each panel contains six maps; the upper left map shows the
original epicardial distribution, while the other five show re-
constructions by the five methods being compared. To the right
of each panel is an electrogram selected from the original data
with a vertical line illustrating the timing of that set of maps. In
each panel, the range is fixed for all isopotential maps and we
set the parameters of map3d to draw isopotential contours that
were evenly spaced between the maximum and minimum of the
original map. In these maps, darker regions represent negative
potentials, lighter regions represent positive potentials, and the
wavefront lies at the transition from darker to lighter regions. In
the isopotential maps corresponding to each solution method,
the relative error and correlation coefficient values at that time
instant are given at the lower right corner of the map.

a) Comparison of Bayesian Approaches: In general, the
MAP-SEP reconstructions achieved better fidelity to the orig-
inal isopotential maps than the MAP reconstructions. In the

Fig. 2. All solution methods are compared. Original and estimated epicardial
potentials for a left ventricularly paced beat using LV-paced training set. Panels
A, B, and C show potentials at 38, 53, and 69 ms after stimulus, respectively.
Dark regions correspond to more negative potentials and light regions to more
positive potentials. Relative error for each method at corresponding time instant
is given at lower right corner of each map. Schematic drawing of coronary ar-
teries was included for reference.

EPI-EST approach, the reconstruction was almost as good as
MAP-SEP near the measurement sites, but of poor quality else-
where. Specifically, at 38 ms, MAP reconstructed a wavefront
propagation pattern that looked more circular than the elliptical
shape of the original, while MAP-SEP reconstructed an ellip-
tical wavefront. Moreover, MAP-SEP captured the narrowness
of the wavefront better than MAP, as indicated by the closer
spacing of the isopotential lines. EPI-EST reconstructed the
tight wavefront with good fidelity to the original around the
8 o’clock position, near the measurement sites, better than MAP
and comparable to MAP-SEP. However, away from the mea-
surement sites, the wavefront became even more spread out and
smoothed than for MAP. At 53 ms, the original wavefront prop-
agated almost parallel to the left anterior descending (LAD)
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Fig. 3. Earliest observation of wavefront near stimulus site. Original and esti-
mated epicardial potentials for same test beat and training set as in Fig. 2 but at
different time instants. Panels A, B, and C show potentials at 9, 13, and 18 ms
after stimulus, respectively. Arrangement of figure is similar to previous figure
of potential maps. (A) t = 9 ms. (B) t = 13 ms. (C) t = 18 ms.

artery on the right ventricle. The wavefront reconstructed by
MAP was spread out in a round shape into the RV and did not
reproduce this parallel wave propagation shape. MAP-SEP re-
constructed the more linear shape of the original. At this time
instant, the original wavefront had moved away from the mea-
surement sites, and EPI-EST did not reliably localize the wave-
front; it produced a general fit to the original wavefront, but the
reconstruction was very spread out and smoothed. Finally, at
69 ms, the wavefront that lay along the 10 o’clock – 4 o’clock
line was spread out in the MAP reconstruction, while the wave-
front reconstructed by MAP-SEP was more similar to the orig-
inal. The wavefront reconstructed by EPI-EST had better fi-
delity to the original than MAP; it was close to the performance
of MAP-SEP. But although the wavefront structure was well
captured in both EPI-EST and MAP-SEP, the EPI-EST ori-
entation was shifted slightly compared to the original and the
wavefront again started to spread out around the 6 o’clock po-

Fig. 4. RE of each inverse solution across all frames in QRS region. Note that
at beginning and end of QRS region, RE values are sometimes larger than one,
but we clipped graph at upper limit of one.

sition. Moreover, EPI-EST distorted the amplitude of the neg-
ative region that lies to the left of the wavefront around the 8
o’clock position; it was much more negative (darker in color)
than the original and the other solutions.

b) Tikhonov Regularization Versus Bayesian Methods:
In general, Tikhonov regularization with or without sparse
epicardial potentials produced spatially smooth results with
poor reproduction of the waveshape. MAP and MAP-SEP
recovered the potentials more successfully than did Tikhonov
regularization. EPI-EST reconstructions were also better than
the Tikhonov regularized reconstructions near the measurement
sites but were either comparable or worse at other locations.

c) Detection of Stimulus Site: One error metric of interest
in the context of clinical application of an electrocardiographic
inverse problem is the ability to locate the site of earliest acti-
vation on the epicardium. Fig. 3 shows three time instants close
to stimulus application time ( ms) and illustrates the supe-
riority of the two Bayesian inverse solutions over the Tikhonov
solutions. In the reconstructions with MAP and MAP-SEP, the
stimulus site first appeared at 9 ms, whereas with Tikhonov
methods, the first appearance was delayed until 13 ms. Even
then, the wavefront was still too spread to properly localize the
stimulus site. Similarly, EPI-EST did not localize the stimulus
site properly even at 18 ms.

d) Relative Errors (RE) and Correlation Coefficients
(CC): Statistical metrics, such as RE and CC, provided
somewhat equivocal results that require careful analysis. As
shown in Fig. 4, during most of the QRS region, MAP-SEP
produced slightly smaller RE values than the two Tikhonov
methods and MAP, but in the second half of the QRS, the
pattern reversed. This finding suggests that it was during the
rapidly changing portion of the spread of activation that the
advantages of Bayesian approaches were most apparent. In
contrast, during the smoother changing portion, the Tikhonov
methods performed better in terms of RE so that the average
RE values, shown in Table II, were slightly superior for the
Tikhonov approaches compared to the Bayesian. CC values,
whose averages for each method are also shown in Table II,
also did not reflect the significant observations that we made on
the epicardial reconstructions.
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TABLE II
AVERAGE OF RE AND CC OVER QRS INTERVAL AND THEIR STANDARD

DEVIATIONS (STD), COMPARED FOR VARIOUS ESTIMATION METHODS

Fig. 5. Estimation error standard deviation precition maps corresponding to
MAP and MAP-SEP with N = 14; 21; and 42.

When interpreting such results, it is important to take into ac-
count previous studies [24] which have suggested that relative
error and similar statistical metrics can hide features of the re-
constructed potential maps that have physiologic importance.
In this paper, we again observed such discrepancies when com-
paring the ability of the different approaches to identify the ear-
liest site of activation, as described previously. Similarly, com-
paring the maps in Figs. 2 and 3 showed qualitative differences
between the two classes of methods that were not visible from
RE plots.

B. Effects of Number of Measured Epicardial Leads

1) Error Maps: Fig. 5 contains estimation error prediction
maps when the number of measured epicardial leads are varied.
In general, the error standard deviation predictions decrease
with the addition of measured epicardial potentials. In order
to quantify the error standard deviation (SD) improvements
with the addition of sparse epicardial potentials, we calculated
the percentage of leads on the heart surface whose error SDs
fell within different 95% confidence intervals. From these
percentages, we created the cumulative distribution functions
shown in Fig. 6, in which the axis shows the 95% confidence
range (i.e., two times error standard deviation values, which
corresponds to two times the boundary of each gray scale level
in Fig. 5) and the axis shows the percentage of leads on the
heart surface. Different line styles correspond to the MAP
method ( ) and the MAP-SEP method with varying
(14, 21, 42). When we used MAP-SEP with , about
90% of the leads had epicardial potential estimates that were
within the 95% confidence range

Fig. 6. Cumulative distribution function that shows percentage of leads that
fall within each error standard deviation interval for MAP and MAP-SEP with
N = 14;21; and 42. x axis shows 95% confidence ranges (i.e., two times
error standard deviation values in millivolts), which correspond to two times
the boundary of each gray scale level in Fig. 5, and y axis shows percentage of
leads on heart surface. Each method is represented with different line style, as
shown in legend.

[see (13)]. As became smaller, the curve shifted to the
right and the confidence range became wider, meaning there
was less confidence in the estimate. There was a significant
improvement in the confidence range by adding as few as

epicardial measurements compared to MAP. In-
creasing from 14 to 21, on the other hand, did not improve
the confidence range as much as increasing from 21 to 42.

2) Epicardial Potential Reconstructions: In Fig. 7, we plot
the isopotential maps of the heart surface of the original beat and
various inverse solutions. We show the isopotential maps for the
same three time instants as in Fig. 2. The RE and CC values at
that time instant are now given at the lower left corner of the
maps. The maps clearly indicate a consistent and progressive
improvement in the reconstruction by adding the known leads.
The improvement is visible at all three time instants through a
better rendering of the wave front (region of high contour den-
sity).

V. DISCUSSION AND CONCLUSION

The main goal in this paper was to evaluate the potential ad-
vantages for inverse ECG obtained by combining standard body
surface mapping measurements and standard forward models
with other information sources. We treated two candidate
additional information sources: statistical prior information
on epicardial potential distributions estimated from a database
of previous recordings, and high-quality measurements of
a small subset of the epicardial potentials made simultane-
ously with the torso surface potential measurements through
catheter-mounted electrodes. We adopted a Bayesian frame-
work because of the flexibility it provides to incorporate this
range of information sources. The Bayesian formulation has
the additional advantage of providing performance analysis
tools to statistically characterize the solution methodology.
We used the Bayesian error covariance to obtain a quantitative
measure of the statistical reliability of a solution. We tested our
methods using a combination of canine epicardial recordings
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Fig. 7. Effects of number of measured epicardial leads. Original and estimated
epicardial potentials for a left ventricularly paced beat using LV-paced training
set. Panels A, B, and C show potentials at 38, 53, and 69 ms after stimulus,
respectively. Arrangement of figure is similar to previous figure of potential
maps except that electrogram has been moved to beneath the map of the original
data and RE and CC values are now given at lower left corner of maps.

and simulated torso potentials. Our results showed that com-
bining different information sources improved the quality of
the inverse solutions. We also were able to show that Bayesian
error covariance provides a powerful means of predicting the
degree of confidence (and the associated error) without the
need for prior knowledge of the solution.

Our main observation of the results was that using all three in-
formation sources yielded better wavefront reconstructions than
using any one of the information sources alone or even any com-
bination in pairs. Furthermore, this improvement was predicted
by the error covariance maps. Specific observations that support
this main point are as follows.

1) In the absence of prior information, using Tikhonov regu-
larization, adding sparse epicardial potentials to torso mea-
surements only improved the reconstructions slightly. This
improvement was only near the measurement sites; away
from the measurement sites, there was no difference be-
tween TIKH and TIKH-SEP reconstructions.

2) When we included prior information in the inverse so-
lution and used Bayesian MAP estimation (MAP and
MAP-SEP), we got better results than those obtained
using Tikhonov regularization (with or without sparse
epicardial measurements). This observation, combined

with the previous one, confirms the findings in [12] and
[13] that including prior information about the epicardial
potentials improves the reconstructions, especially if we
can obtain a reasonable set of epicardial data to create a
training set.

3) When we only used sparse epicardial potentials and the
prior information (i.e., when we applied EPI-EST), the
fidelity of the reconstructed wavefront to the original
was lost at locations even a short distance away from the
measurement sites, while inverse solutions (even using
Tikhonov regularization) reconstructed the wavefront
more accurately than EPI-EST. This result demonstrated
that we can gain valuable information by including the
torso potentials and the forward model.

4) When we compared the error covariance maps corre-
sponding to MAP and MAP-SEP reconstructions, we
observed that the predicted error variances were usually
smaller for MAP-SEP than for MAP. The corresponding
inverse solutions agreed with this prediction: wavefront
shape and extent was reconstructed more accurately with
MAP-SEP than with MAP.

5) Bayesian-based inverse solution methods, i.e., MAP and
MAP-SEP, were more successful at finding the stimulus
site than the Tikhonov solutions and EPI-EST.

The second main observation from this paper was that in
the error covariance maps, the standard deviation values be-
came smaller over the heart surface when the number of epicar-
dial measurement sites increased; around the measurement sites,
error standard deviation values became very small (practically
zero), meaning that confidence in the reliability of the recon-
structions increased with the addition of sparse epicardial po-
tentials. The corresponding inverse solutions also supported this
finding, i.e., we obtained better reconstructions as the number of
epicardial measurement sites increased. Detailed observations
follow.

1) Comparing all four cumulative distribution functions we
obtained from the error covariance maps, we observed that
the 95% confidence range was achieved at a much smaller
value when we used than or ,
whereas there was not a big difference between the con-
fidence ranges of the latter two. On the other hand, the
confidence range improved when we included only a small
number of epicardial leads (i.e., ) compared to
solutions without them (i.e., MAP).

2) MAP-SEP and EPI-EST error standard deviation maps
had significantly smaller error standard deviation values
around the sparse epicardial measurement sites than those
of the MAP approach.

3) A significant outcome of these observations is that one
could design a sparse epicardial measurement scheme
using the error covariance maps and the corresponding
cumulative distribution functions. There are two main
parameters in this design, the number of leads and their
locations; for practical purposes, an optimal design will
be a combination that additionally reflects the limitations
of electrode design and placement. One possible tool for
determining optimized designs is the predicted cumula-
tive distribution function (cdf). For example, if there are
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different values with varying spatial
coverages available such that ,
one could decide to use instead of if the im-
provement in cdf percentages going from to
were not significant compared to the improvement going
from to . Alternatively, one could take advan-
tage of the finding that around the measurement sites, error
standard deviation decreases; if the error standard devi-
ation maps show large values for a region, which means
the reconstructions in that region will be less reliable, one
could attempt to place sparse epicardial measurements
nearby to reduce the error standard deviation and increase
reliability of the reconstruction. If the region with the high
error standard deviation were to lie near a major coro-
nary vein, one could obtain epicardial potentials directly
using intravenous catheters. If the region with high error
standard deviation were away from the veins, one might
employ electrodes inserted through the thorax to contact
the heart surface [32]; such electrodes are not restricted to
coronary vein locations.

There are, however, still some open questions and possible
shortcomings of the methods we have proposed.

1) All evaluations of the methods presented here were car-
ried out on ventricularly paced beats. Obviously, such beats
present a much simpler and more organized propagation
pattern, one that may indeed be more predictable with a
correlation approach. Thus, all the results should be taken
as directly applicable only to such beats; although, we
believe that many of the conclusions will carry over to
supra-ventricularly paced beats.

2) We used only the spatial correlations while neglecting the
temporal correlations. However, epicardial potentials are
clearly correlated in time and including these correlations
in addition to the spatial ones would result in a more com-
plete statistical model.

3) We used the Bayesian error covariance maps without at-
tention to the error in the prior model. In a companion
study [8], we showed that the similarity between the theo-
retical error covariance and actual error covariance calcu-
lated from the error between the original potentials and the
solutions depends on how well the prior model represents
the epicardial potentials. In order to establish the error co-
variance maps as a valid and robust evaluation tool, one
should study the uncertainties in the error covariance maps
due to errors in the prior covariance matrix estimation. One
way to achieve this would be to evaluate the sensitivity of

in (11) to deviations in .
4) Previous studies have shown that the better the prior model,

the better the reconstructions [24]. Here, we assumed that
the training set was good and did not try to identify the
best training set. However, even with this training set, we
obtained results that encouraged us to pursue further ap-
plication of Bayesian estimation and evaluation tools. In
order to improve the results, one could develop automatic
and robust methods to create a training set that best fit the
data. One way to achieve this might be to estimate the epi-
cardial potentials and the prior statistics simultaneously in
an iterative fashion, e.g., using an expectation-maximiza-

TABLE III
AVERAGE OF RE AND CC OVER QRS INTERVAL AND THEIR STANDARD

DEVIATIONS (STD), COMPARED FOR BAYESIAN MAP ESTIMATION FOR

VARYING NUMBER OF SPARSE EPICARDIAL MEASUREMENTS. VALUES FOR

TIKHONOV REGULARIZATION, TIKH, ARE ALSO INCLUDED FOR COMPARISON

tion-type approach [33]. Another way would be to pick the
training set that best fits the measurements, an approach we
have already addressed in preliminary fashion [8].

5) We neglected geometric errors and errors in the noise
model. These errors should be studied and, in fact, could
be included in the statistical framework.

The methods proposed in this paper are not specific to in-
verse electrocardiography problem in terms of epicardial poten-
tial distributions. On the contrary, other types of inverse prob-
lems could use these ideas to improve the accuracy and relia-
bility in their respective research areas using the following ap-
proaches.

1) Incorporating various information sources in a Bayesian
framework can be extended to other types of inverse prob-
lems. For example, endocardial mapping data via noncon-
tact electrodes can be combined with sparse endocardial
measurements via contact electrodes. Rao et al. presented
an inverse solution in which both endocardial mapping data
via noncontact electrodes and sparse endocardial measure-
ments via contact electrodes were available, but the latter
were used just for validation [34]. These measurements
could be combined to improve the inverse solution.

2) Estimation error covariance can be used to evaluate other
types of inverse problems. Russell et al. showed feasibility
of this idea when both the sources and the measurement
noise are i.i.d. This idea could easily be extended in a sim-
ilar fashion to our derivation to handle full prior covariance
matrices, such as the one used in the inverse EEG/MEG
problem of [35].
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