
Managing the Evolution of Dataflows with VisTrails
Extended Abstract

Steven P. Callahan Juliana Freire Emanuele Santos Carlos E. Scheidegger
Cláudio T. Silva Huy T. Vo

University of Utah
vistrails@sci.utah.edu

1 Introduction

Scientists are now faced with an incredible volume of
data to analyze. To successfully analyze and validate various
hypotheses, it is necessary to pose several queries, correlate
disparate data, and create insightful visualizations of both
the simulated processes and observed phenomena. Data
exploration through visualization requires scientists to go
through several steps. In essence, they need to assemble
complex workflows that consist of dataset selection, specifi-
cation of series of operations that need to be applied to the
data, and the creation of appropriate visual representations,
before they can finally view and analyze the results. Often,
insight comes from comparing the results of multiple visual-
izations that are created during the data exploration process.
For example, by applying a given visualization process to
multiple datasets; by varying the values of simulation para-
meters; or by applying different variations of a given process
(e.g.,which use different visualization algorithms) to a given
dataset. Unfortunately, today this exploratory process is far
from interactive and contains many error-prone and time-
consuming tasks.

Visualization systems such as Paraview1 and SCIRun2 al-
low the interactive creation and manipulation of complex
visualizations. These systems are based on the notion of
dataflows, and they provide visual interfaces to produce vi-
sualizations by assemblingpipelinesout of modules that are
connected in a network. However, these systems have im-
portant limitations which hamper their ability to support the
data exploration process. First, there isno separation be-
tween the definition of a dataflow and its instances. In order
to execute a given dataflow with different parameters (e.g.,
different input files), users need to manually set these para-
meters through a GUI—clearly this process does not scale
to more than a few visualizations. And second, modifica-
tions to parameters or to the definition of a dataflow are
destructive—no change history is maintained. This places
the burden on the scientist to first construct the visualiza-
tion and then to remember the values and the exact dataflow
configuration that led to a particular image.

1http://www.paraview.org
2http://software.sci.utah.edu/scirun.html

At the University of Utah, we have started to build Vis-
Trails, a visualization management system. VisTrails pro-
vides a scientific workflow infrastructure which can be com-
bined with existing visualization systems and libraries. A
key feature that sets VisTrails apart from previous visualiza-
tion as well as scientific workflow systems is the support for
data exploration. By maintainingdetailed provenance of the
exploration process—both within and across different ver-
sions of a dataflow—it allows scientists to easily navigate
through the space of dataflows created for a given explo-
ration task. In particular, this gives them the ability to return
to previous versions of a dataflow and compare their results.
In addition, in VisTrails there is a clear separation between
a dataflow definition and its instances. A dataflow definition
can be used as a template, and instantiated with different sets
of parameters to generate several visualizations in a scalable
fashion—allowing scientists to easily explore the parameter
space for a dataflow. Finally, by representing the provenance
information in a structured way, the system allows the visu-
alization provenance to be queried and mined.

Although the issue of provenance in the context of sci-
entific workflows has received substantial attention recently,
most works focus on data provenance,i.e., maintaining in-
formation of how a given data product was generated [5].
This information has many uses, from purely informational
to enabling the regeneration of the data product, possibly
with different parameters. However, while solving a partic-
ular problem, scientists often create several variations of a
workflow in a trial-and-error process. These workflows may
differ both in the parameter values used and in their spec-
ifications. If only the provenance of individual data prod-
ucts is maintained, useful information about the relationship
among the workflows is lost.

To the best of our knowledge, VisTrails is the first sys-
tem to provide support for tracking workflow evolution. In
this paper, we describe the provenance mechanism used in
VisTrails, which uniformly captures changes to parameter
values as well as to workflow definitions.

Outline. The rest of this paper is outlined as follows. In
Section 2, we describe our motivating example. Section 3
gives a brief overview of the VisTrails architecture. Our new

approach for tracking dataflow evolution is presented in Sec-
tion 4. Although our focus is on dataflows for visualization,
our ideas are applicable to general scientific workflows. We
discuss this issue in Section 5.

2 Motivating Example: EOFS

Paradigms for modeling and visualization of complex
ecosystems are changing quickly, creating enormous oppor-
tunities for scientists and society. For instance, powerful
and integrative modeling and visualization systems are at
the core of Environmental Observation and Forecasting Sys-
tems (EOFS), which seek to generate and deliver quantifi-
ably reliable information about the environment at the right
time and in the right form to the right users. As they ma-
ture, EOFS are revolutionizing the way scientists share in-
formation about the environment and represent an unprece-
dented opportunity to break traditional information barriers
between scientists and society at large [1]. However, the
shift in modeling paradigms is placing EOFS modelers in
an extremely challenging position, and at the risk of losing
control of the quality of operational simulations. The prob-
lem results from the breaking of traditional modeling cycles:
tight production schedules, dictated by real-time forecasts
and multi-decade simulation databases, lead even today to
tens of complex runs being produced on a daily basis, re-
sulting in thousands to tens of thousands of associated visu-
alization products.

As an example, Professor Antonio Baptista, the lead in-
vestigator of the CORIE3 project prepares figures for pre-
sentations showing results of simulations that he has de-
signed. The component elements of his figures (whether
static or animated) are generated over a few hours by a se-
quence of scripts, activated by a different staff member in
his group. To create the composite figure, Baptista has to
request, by e-mail, information on which runs have been
concluded. He then draws the composite figure for a par-
ticular run in PowerPoint using cut-and-paste. This process
is repeated for similar and complementary runs. Because
element components are static and visually optimized for
each run, cross-run synthesis often have scale mismatches
that make interpretations difficult.

The process followed by Baptista is both time consuming
and error prone. Each of these visualizations is produced by
custom-built scripts (or programs) manually constructed and
maintained by several members of Baptista’s staff. For in-
stance, a CORIE visualization is often produced by running
a sequence of VTK4 and custom visualization scripts over
data produced by simulations. Exploring different configu-
rations, for example, to compare the results of different ver-
sions of a simulation code, different rendering algorithms,
or alternative colormaps, requires the scripts to be modi-
fied, and/or the creation of new scripts. Since there is no

3http://www.ccalmr.ogi.edu/CORIE
4http://www.vtk.org

Visualization
Spreadsheet

Vistrail
Builder

Vistrail
Repository

Cache
Manager

PlayerVistrail
Server

Optimizer

Cache

Visualization
API

Vistrail
Log

Script
API

History
Manager

Figure 1. VisTrails Architecture.

infrastructure to manage these scripts (and associated data),
often, finding and running them are tasks that can only be
performed by their creators. This is one of main reasons
Baptista is not able to easily produce the visualizations he
needs in the course of his explorations. Even for their cre-
ators, it is hard to keep track of the correct versioning of
scripts and data. Since these visualization products are gen-
erated in an ad-hoc manner, data provenance is not captured
in a persistent way. Usually, the figure caption and legends
are all the metadata available for this composite visualiza-
tion in the PowerPoint slide—making it hard, and some-
times impossible, to reproduce the visualization.

3 The VisTrails System

With VisTrails, we aim to give scientists a dramatically
improved and simplified process to analyze and visualize
large ensembles of simulations and observed phenomena.
VisTrails managesboth the data and metadata associated
with visualization products. The high-level architecture of
the system is shown in Figure 1. Users create and edit
dataflows using theVistrail Builder user interface. The
dataflow specifications are saved in theVistrail Repository.
Users may also interact with saved dataflows by invok-
ing them through theVistrail Server(e.g., through a Web-
based interface) or by importing them into theVisualization
Spreadsheet. Each cell in the spreadsheet represents a view
that corresponds to a dataflow instance; users can modify
the parameters of a dataflow as well as synchronize para-
meters across different cells. Dataflow execution is con-
trolled by theVistrail Cache Manager, which keeps track
of operations that are invoked and their respective parame-
ters. Only new combinations of operations and parameters
are requested from theVistrail Player, which executes the
operations by invoking the appropriate functions from the
Visualization and Script APIs. The Player also interacts
with the Optimizermodule, which analyzes and optimizes
the dataflow specifications. A log of the vistrail execution
is kept in theVistrail Log. The different components of the
system are described below. Since our emphasis in this pa-
per is on dataflow evolution and history management, we
only sketch the main features of the system here, for further
details see [2].

(a) (b)

Figure 2. The Vistrail Builder (a) and Vistrail Spreadsheet (b) showing the dataflow and visualization products of the CORIE data.

Dataflow SpecificationsA key feature that distinguishes
VisTrails from previous visualization systems is that it sep-
arates the notion of a dataflow specification from its in-
stances. A dataflow instance consists of a sequence of op-
erations used to generate a visualization. This information
serves both as a log of the steps followed to generate a
visualization—a record of the visualization provenance—
and as a recipe to automatically regenerate the visualization
at a later time. The steps can be replayed exactly as they
were first executed, and they can also be used as templates—
they can be parameterized. For example, the visualization
spreadsheet in Figure 2 illustrates a multi-view visualization
of a single dataflow specification varying the time step para-
meter. Operations in a vistrail dataflow include visualization
operations (e.g.,VTK calls); application-specific steps (e.g.,
invoking a simulation script); and general file manipulation
functions (e.g.,transferring files between servers). To han-
dle the variability in the structure of different kinds of oper-
ations, and to easily support the addition of new operations,
we defined a flexible XML schema to represent the general
dataflows. The schema captures all information required to
re-execute a given dataflow. The schema stores information
about individual modules in the dataflow (e.g.,the function
executed by the module, input and output parameters) and
their connections—how outputs of a given module are con-
nected to the input ports of another module. The XML rep-
resentation for vistrail dataflows allows the reuse of standard
XML tools and technologies. An important benefit of using
an open, self-describing, specification is the ability to share
(and publish) dataflows.

Another benefit of using XML is that the dataflow spec-
ification can be queried. Users can query a set of saved
dataflows to locate a suitable one for the current task; query
saved dataflow instances to locate anomalies documented
in annotations of previously generated visualizations; locate

data products and visualizations based on the operations ap-
plied in a dataflow; cluster dataflows based on different cri-
teria; etc. For example, an XQuery query could be posed by
Professor Baptista to find a dataflow that provides a 3D visu-
alization of the salinity at the Columbia River estuary (as in
Figure 2) from a database of published dataflows. Once the
dataflow is found, he could then apply the same dataflow
to more current simulation results, or modify the dataflow
to test an alternative hypothesis. With VisTrails, he has the
ability to steer his own simulations.

Caching, Analysis and OptimizationHaving a high-level
specification allows the system toanalyze and optimize
dataflows. Executing a dataflow can take a long time, es-
pecially if large datasets and complex visualization opera-
tions are used. It is thus important to be able to analyze the
specification and identify optimization opportunities. Pos-
sible optimizations include, for example factoring out com-
mon subexpressions that produce the same value; removing
no-ops; identifying steps that can be executed in parallel;
and identifying intermediate results that should be cached to
minimize execution time. Although most of these optimiza-
tion techniques are widely used in other areas, they have yet
to be applied in dataflow-based visualization systems.

In our current VisTrails prototype, one optimization we
have implemented is memoization. VisTrails leverages the
dataflow specification to identify and avoid redundant oper-
ations. For complete details, see [2]. Caching is especially
useful while exploring multiple visualizations. When varia-
tions of the same dataflow need to be executed, substantial
speedups can be obtained by caching the results of overlap-
ping subsequences of the dataflows.

Playing a Vistrail The Vistrail Player (VP) receives as in-
put an XML file for a dataflow instance and executes it using
the underlying Visualization or Script APIs. Information

...
<action parent=”54” time=”55” what=”addModule”>
 <object cache=”0” id=”8” name=”vtkTextActor”/>
</action>

<action parent=”55” time=”56” what=“addConnection”>
 <connect id=”7”>
 <objectInput destId=”6” name=”AddActor2D”
sourceId=”5”/>
</connect>
</action>
...

...
<action parent="105" time="111"
 what="changeParameter">
 <set function="SetTimeStep" functionId="1"
 moduleId="0" parameter="(unnamed)"
 parameterId="0" type="int" value="90"/>
 </action>
...

Figure 3. A snapshot of the VisTrails history management interface. Each node in the vistrail history tree represents a dataflow
version. An edge between a parent and child nodes represents to a set of (change) actions applied to the parent to obtain the dataflow
for the child node. The image and dataflow instance corresponding to the node labeled “Time Step 90” are shown on the right.

pertinent to the execution of a particular dataflow instance is
kept in the Vistrail Log (see Figure 1). There are many ben-
efits from keeping this information, including: theability to
debugthe application—e.g., it is possible to check the re-
sults of a dataflow using simulation data against sensor data;
reduced cost of failures—if a visualization process fails, it
can be restarted from the failure point. The latter is espe-
cially useful for long running processes, as it may be very
expensive and time-consuming to execute the whole process
from scratch. Loggingall the information associated with
all dataflows may not be feasible. VisTrails provides an in-
terface that lets users select which and how much informa-
tion should be saved.

Creating and Interacting with Vistrails The Vistrail
Builder (VB) provides a graphical user interface for creating
and editing dataflows (Figure 2(a)). It writes (and also reads)
dataflows in the same XML format as the other components
of the system. It shares the familiar nodes-and-connections
paradigm with dataflow systems. To allow users to compare
the results of multiple dataflows, we built a Visualization
Spreadsheet (VS). The VS provides the user a set of separate
visualization windows arranged in a tabular view. This lay-
out makes efficient use of screen space, and the row/column
groupings can conceptually help the user explore the visu-
alization parameter space. The cells may execute different
dataflows and they may also use different parameters for the
same dataflow specification (see Figure 2(b)). To ensure ef-
ficient execution, all cells share the same cache. Users can
also synchronize different cells using the VS interface.

4 Capturing Dataflow Evolution

Vistrail: An Evolving Dataflow To provide full provenance
of the visualization exploration process, we introduce the
notion of a visualization trail—a vistrail.A vistrail captures
the evolution of a dataflow—all the trial-and-error steps fol-
lowed to construct a set of visualizations. A vistrail consists
of a collections of dataflows—several versions of a dataflow
and its instances. A vistrail allows scientists to explore visu-

alizations by returning to and modifying previous versions
of a dataflow.

An actual vistrail is depicted in Figure 3. Instead of stor-
ing a set of related dataflows, we store the operations or ac-
tions that are applied to the dataflows. A vistrail is essen-
tially a tree in which each node corresponds to aversionof
a dataflow, and each edge between nodes P and C, where P is
the parent of C, corresponds to one or more actions applied
to P to obtain C. This is similar to the versioning mechanism
used in DARCS5. More formally, letDF be the domain of
all possible dataflow instances, where /0∈ DF is a special
empty dataflow. Also, letx : DF → DF be a function that
transforms a dataflow instance into another, andD be the
set of all such functions. A vistrail node corresponds to a
dataflow constructed by a sequence of actions:

vt = xn◦xn−1◦ . . .◦x1◦ /0

where eachxi ∈D .
An excerpt of the XML schema for a vistrail is shown

in Figure 4.6 A visTrail has a unique id, a name, an
optional annotation, and a set of actions. Eachaction is
uniquely identified by a timestamp (@time), which corre-
sponds to the time the action was executed. Since actions
form a tree, an action also stores the timestamp of its parent
(@parent). The different actions we have implemented in
our current prototype are described below. To simplify the
retrieval of particularly interesting versions, a vistrail node
can optionally have a name (the optional attributetag in
the schema).
Dataflow Change Operators.In the current VisTrails pro-
totype, we implemented a set of operators that correspond
to common actions applied in the exploratory process, in-
cluding: adding or replacing a module, deleting a module,
adding a connection between modules, and setting parame-
ter values. We also have an import operator that adds a
dataflow to an empty vistrail—this is useful for starting a
new exploration process.

5http://abridgegame.org/darcs
6Due to space constraints, we only show subset of the schema and use

a notation that is less verbose than XML Schema.

type VisTrail =
visTrail [@id, @name, Action * , annotation?]

type Action =
action [@parent, @time, tag?, annotation?,

(AddModule|DeleteModule|ReplaceModule|
AddConnection|DeleteConnection|SetParameter)]

Figure 4. Excerpt of the vistrail schema.

This action-oriented provenance mechanism captures im-
portant information about the exploration process, and it
does so through a very simple tracking (and recording) of
the steps followed by a user. Although quite simple and intu-
itive, this mechanism has important benefits. Notably, it uni-
formly captures both changes to dataflow instances (i.e.,pa-
rameter value changes) and to dataflow specifications (i.e.,
changes to modules and connections).

In addition, the action-oriented model leads to a very nat-
ural means toscript dataflows. For example, to execute a
given dataflowf over a set ofn different parameter values,
one just needs to apply a sequence of set parameter actions
to f :
(setParameter(idn,valuen)◦ . . .(setParameter(id1,value1)◦ f) . . .)

Or to compare the results of different rendering algorithms,
sayR1 andR2, abulk updatecan be applied that replaces all
occurrences ofR1 with R2 modules.
User Interface. At any point in time, the scientist can
choose to view the entire history of changes, or only the
dataflows important enough to be given a name (i.e., the
tagged nodes). The history tree in Figure 3 shows a set of
changes to a dataflow that was used to generate the CORIE
visualization products shown in Figure 2. In this case, a
common dataflow was created from scratch to visualize the
salinity in a small section of the estuary for all time steps.
This common dataflow (tagged “With Text”), was then used
to create four different dataflows that represent different
time steps of the data and are shown separately in the spread-
sheet. Note that in this figure, only tagged nodes are dis-
played. Edges that hide untagged nodes are marked with
three short perpendicular lines. We are currently investi-
gating alternative structures and techniques to display the
history tree. One issue with the current interface is that it
does not convey the chronological order in which the ver-
sions were created—the structure only shows the dependen-
cies among the versions. Thus, it can be hard to identify the
most current branch one has worked on. To aid the user in
this task, we plan to use visual cues,e.g., to use different
saturation levels to indicate the age of the various dataflows.
In addition, a vistrail is often used in a collaborative setting,
where several people can modify a given vistrail. For shared
vistrails, it is also important to distinguish nodes created by
different people, and we plan to use color to identify differ-
ent users.
Related Work. Kreuseleret al. [3] proposed a history
mechanism for exploratory data mining. They use a tree-
structure, similar to a vistrail, to represent the change his-
tory, and describe how undo and redo operations can be cal-
culated in this tree structure. They describe a theoretical
framework that attempts to capture the complete state of a

software system. In contrast, in our work we use a simpler
model and only track the evolution of dataflows. This allows
for the much simpler action-based provenance mechanism
described above.

5 Conclusion and Future Work

In this paper, we proposed a novel provenance mecha-
nism that uniformly captures changes to parameters as well
as to dataflow definitions. This mechanism has been im-
plemented in VisTrails, a visualization management system
whose goal is to provide adequate infrastructure to support
data exploration through visualization. Although our focus
in the VisTrails project has been on dataflows for visualiza-
tion, the techniques we have developed are general and have
been adopted in other domains. For example: the VisTrails
cache management infrastructure was implemented in Ke-
pler, a scientific workflow system [4]; and our provenance
mechanism is being used in the Emulab testbed, to track re-
visions of experiments7.

An alpha release of VisTrails (available upon request) is
currently being tested by a select group of domain scientists.
Acknowledgments. António Baptista has provided us
valuable input on our system, as well as several CORIE
datasets for our experiments. This work is partially sup-
ported by the National Science Foundation (under grants
IIS-0513692, CCF-0401498, EIA-0323604, CNS-0514485,
IIS-0534628, CNS-0528201, OISE-0405402), the Depart-
ment of Energy, an IBM Faculty Award, and a University
of Utah Seed Grant. E. Santos is partially supported by a
CAPES/Fulbright fellowship.

References

[1] A. Baptista, T. Leen, Y. Zhang, A. Chawla, D. Maier, W.-C.
Feng, W.-C. Feng, J. Walpole, C. Silva, and J. Freire. Envi-
ronmental observation and forecasting systems: Vision, chal-
lenges and successes of a prototype. InConference on Systems
Science and Information Technology for Environmental Appli-
cations (ISEIS), 2003.

[2] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger,
C. Silva, and H. Vo. Vistrails: Enabling interactive multiple-
view visualizations. InIEEE Visualization 2005, pages 135–
142, 2005.

[3] M. Kreuseler, T. Nocke, and H. Schumann. A history mech-
anism for visual data mining. InIEEE Information Visualiza-
tion Symposium, pages 49–56, 2004.

[4] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-
Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific Work-
flow Management and the Kepler System.Concurrency and
Computation: Practice & Experience, 2005.

[5] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-science.SIGMOD Record, 34(3):31–36,
2005.

7http://www.emulab.net

