Hardware-Assisted Natural Neighbor Interpolation

Quanfu Fan* Alon Efratf

Vladlen Koltun#

Shankar Krishnan®

Suresh Venkatasubramanian¥

Abstract

Natural neighbor interpolation is a weighted average in-
terpolation method that is based on Voronoi tessellation.
In this paper, we present and implement an algorithm for
performing natural neighbor interpolation using graphics
hardware. Unlike traditional software-based approaches
that process one query at a time, we develop a scheme
that computes the entire scalar field induced by natural
neighbor interpolation, at which point a query is a trivial
array lookup, and range queries over the field are easy to
perform.

Our approach is faster than the best known software
implementations and makes use of general purpose stream
programming capabilities of current graphics cards. We
also present a simple scheme that requires no advanced
graphics capabilities and can process natural neighbor
queries faster than existing software-based approaches.

Finally, recognizing the limitation incurred by the
bounded size of graphics frame buffers, we propose a sub-
division approach that allows performing queries locally
in a subdivision of the input domain. This approach can
reduce to a negligibly small degree (< 1%) the loss of pre-
cision caused by the naive scaling method while still pro-
cessing queries faster than the software-based approaches
when the number of sites is large.

1 Introduction

A problem often encountered in many applications
is that of reconstructing continuous surfaces from
sampled data points. Many interpolation methods
have been developed for this problem, including min-
imum curvature splines, Kriging, bilinear and Bezier
patches being among the methods that have been
used [24]. Natural neighbor interpolation (NNI), also
called area stealing interpolation, is one of the most
popular methods and has been widely used in geo-
physical modeling, surface reconstruction, and even
computational solid/fluid mechanics [1, 5, 16, 21].
First introduced by Sibson [19, 20], NNI is a
weighted average method that constructs the inter-

~ *Department of Computer Science, University of Arizona;
quanfu@cs.arizona.edu

fDepartment of Computer Science, University of Arizona;
alon@cs.arizona.edu

fComputer Science Division, University of California,
Berkeley; vladlen@cs.berkeley.edu

8 AT&T Labs — Research; krishnas@research.att.com

TAT&T Labs — Research; suresh@research.att.com

polant by using natural neighbor coordinates based
on the Voronoi tessellation of a set of sites. Besides
being a fairly simple method to describe, NNI yields
an interpolant that is C° everywhere and C* every-
where except at the sample points. It is also non-
parametric, which is attractive in many settings as it
thus assumes no special properties of the data. How-
ever, since NNI involves tessellating the Voronoi dia-
gram, it suffers from the disadvantage of being com-
putationally costly, especially when the number of
sites is large.

Related work While extensive research has
been conducted on the subject of NNI [3, 16, 20, 23,
26, 24], there are only a few implementations pub-
licly available for general use [7, 14, 15, 25]. Among
them, the “nngridr” package [25] developed by Wat-
son received recognition for the method that com-
putes all the Voronoi polygons required for one in-
terpolation operation using a single combined calcu-
lation. NatGrid [7], a software package by NCAR,
is based on the work of Watson and is not available
for free download. Owen [14] implemented both 2D
and 3D NNI in a package that was not released to the
public. Recently, Sakov [15], implemented NNI based
on Shewchuk’s Triangle package [18] for computing
the underlying Delaunay triangulation.

The powerful computational ability of modern
graphics cards has led to their use as a fast streaming
coprocessor, solving many problems outside the realm
of computer graphics. Notable examples include path
planning, collision detection, particle systems, and
physical simulation. Starting with the work of Hoff et
al. [10] on the computation of Voronoi diagrams,
there are now fast hardware-assisted algorithms for
problems in data analysis, geometric optimization,
and solid modeling, among others [2, 10,11, 12,9, 13].

Our work In this paper, we extend the
paradigm of hardware-assisted computation to the
area of natural neighbor interpolation. Our main con-
tributions are as follows.

e We present a simple approach that can answer

natural neighbor interpolation queries in one
rendering pass with a single readback. (See Sec-
tion 3 for definitions.) This scheme performs bet-
ter than current software implementations and
uses only standard features of modern graphics
cards.

e We present a more general scheme, based on
the latest generation of graphics architectures,
that can compute natural neighbor interpolation
queries simultaneously for each (discrete) point
within the convex hull of the input point set.
This approach also leads to a scheme for per-
forming range queries on the natural neighbor
interpolation function; an example would be the
computation of the average or maximum value
in a given range.

e We present a subdivision approach to reduce
the loss of precision caused by the scaling that
is usually required when the inputs are widely
spread over a large domain.

e We present a detailed experimental study of the
above approaches, comparing them to existing
software implementations.

The paper is organized as follows. Section 2
introduces natural neighbor interpolation and Sec-
tion 3 briefly reviews hardware-assisted computation
of Voronoi diagrams. We present a simple overlay-
based NNI interpolation scheme in Section 4 and
demonstrate a general method for computing NNI
over an entire range in Section 5. Section 7 presents
a detailed experimental study and future directions
are discussed in Section 8.

Figure 1: Area stolen after a query point is inserted
into a Voronoi diagram.

2 Natural Neighbor Interpolation

We are given a set S = {s1,...,8p} of sites, and a
weight function f : S — R. For a point g, the interpo-
lated value at q is estimated as f(q) = 3, wi(q) f(s:),
where w;(g) is the weight of s;. This method is called
weighted average interpolation. Different interpola-
tion methods differ by the way the weights are deter-
mined.

NNI relies on the construction of Voronoi dia-
grams. Here w; is defined as follows:

o Area(Vsugqy (@) N Vs(s:))
@D e T eV @)

Here Vs(s;) is the Voronoi cell of s; in Vor(S) (the
Voronoi diagram of S) and Vsyu(q}(g) is the Voronoi
cell of g in Vor(SU{q}). (See Figure 1.) We refer to
the set of points {s; | Vsugqr(q) N V(si) # 0} as the
natural neighbors of q. In the sequel, when we refer to
f(q@), it should be understood that the weight vector
w; associated with f is defined as in Equation 2.1.

In our problem, the area of the Voronoi cell is
approximated by the number of pixels in the Voronoi
cell. Let N(Vsu{q}(q)) be the number of pixels in the
Voronoi cell Vgyiq3(g). Equation 2.1 can be closely
approximated by

_ NVsuigr(@) N Vs(si)

(2.2) P
' N(Vsuiqr ()
3 Preliminaries
3.1 The Graphics Pipeline. The graphics

pipeline is often used as a rendering (or “drawing”)
engine to facilitate interactive display of complex
three-dimensional geometry. The input to the
pipeline is a set of geometric primitives and images,
which are transformed and rasterized at various
stages of the pipeline to produce a stream of frag-
ments that is “drawn” on a two-dimensional grid
of pixels known as the frame buffer. The frame
buffer is a collection of several individual dedicated
buffers (color, stencil, depth buffers, etc.). The
user interacts with the pipeline via a standardized
software interface (such as OpenGL or DirectX) that
is designed to mimic the graphics subsystem. For
more details, the reader may refer to the OpenGL
programming guide [27].

3.2 Computing Voronoi Diagrams and Over-
lays. It is well known that the Voronoi diagram of
a set of points in the plane can be computed using
the graphics pipeline [10]. Each point is assigned a

specific color, and at the end of the calculation, each
Voronoi region is represented as an area of the ap-
propriate color in the color buffer. For the Euclidean
metric, this is achieved by drawing right angled cones
with their apex at each point, as seen from below.
The paper by Hoff et al. [10] has further details on
this procedure; since cones are drawn by approximat-
ing their surface with triangles, an appropriate num-
ber of triangles must be drawn to ensure that the
error incurred is less than one pixel.

We also need the depth field that the Voronoi
diagram induces. At each pixel, the depth buffer
contains the height of the lowest cone. Since the
cones are right angled, this is also the distance of
the nearest Voronoi site to the pixel.

4 A Simple Overlay-Based Method.

In this section, we present a simple algorithm for
natural neighbor interpolation of a function f(-). The
input includes a set S = {s1,...,8,} of n sites,
each site with its functional value f(s;), and a set
Q = {q1,-..,9m} of m query points. The algorithm
outputs the interpolated value f(g;) for each g;.

Our algorithm is based on the following overlay
method:

Algorithm 1 Overlay Method for NNI queries

Compute Vor(S)

for Each query ¢ € () do
Compute Vor(S U {q})
Compute the overlay of Vor(S) and V(q) (in
Vor(S U{q}))
Determine the weights of the natural neighbors
of ¢ from the overlay, and return f(q)

end for

We remark in passing that the running time of
this algorithm for a single query ¢, using standard
algorithms for Voronoi diagram computation and
line segment intersection, is O((n + k)logn) in a
traditional RAM model, where k is the number of
natural neighbors of q.

4.1 Implementation. The first step is easy to
implement (see Section 3). It yields two two-
dimensional arrays. One contains at each pixel a
color corresponding to the site whose Voronoi cell
that pixel lies in. The other contains the distance
of the pixel from the corresponding site.

When we now process a query point ¢ by drawing
its corresponding cone, an appropriate depth test will

ensure that pixels of this cone will only be drawn
where this cone is lower than all other cones, implying
that for all such pixels, the query point is the closest
site.

If we clear the color buffer before this rendering
step, it will now contain all (and only) the pixels in
the Voronoi cell of ¢. If we now read back the color
buffer, and access the color (in the earlier color buffer)
of all drawn pixels (i.e., all pixels in Vsyg1(q)),
the number of pixels of each color represents the
stolen area from the corresponding site, and the total
number of pixels is a measure of the area of Vsuy4)(q).
Given these quantities, f(¢) can now be computed.

This is a straightforward implementation of the
above algorithm, and as we shall see in Section 7, per-
forms reasonably well in comparison with standard
software-based approaches. However, it suffers from
two drawbacks. The number of generated fragments
is very large (see below for details) and to perform a
readback for each query is very expensive. In what
follows, we address these two issues.

4.2 Clustering queries. In the graphics pipeline,
each geometric primitive is rasterized into fragments.
A sequence of per-fragment operations such as depth
tests and stencil tests are subsequently performed on
all fragments after rasterization and only those frag-
ments that pass all the tests update their correspond-
ing pixels in the frame buffer. Generally speaking, the
larger the area of the primitive, the more fragments
generated and thus the more expensive the rendering.

Another issue peculiar to hardware-assisted algo-
rithms is the issue of read backs: extracting data from
the frame buffer into main memory. This is typically
an expensive operation (graphics cards use a slow bus
for data transfer in this direction), and is costly both
in terms of its fixed cost as well as the bandwidth
available for transfer. It also stalls the pipeline for
future rendering passes.

The first observation that helps minimize the
number of rendered fragments is that the Voronoi
cones only need to be tall enough to detect every
Voronoi vertex. (As opposed to cones that are as
large as the whole frame buffer.) It is easy to see that
the cone height needs only be as large as the radius r*
of the largest empty circle for the algorithm to detect
all Voronoi cells inside the convex hull of the points.

The second observation makes use of logical hard-
ware functions. In the above algorithm, all the infor-
mation we need for a particular query q is a bit that
determines for each pixel whether it is in Vgys1(q)
or not. Since color buffers have 32 bits (eight each for

red, green, blue, and the alpha channel), we can pro-
cess thirty two queries simultaneously using a hard-
ware operation that performs a bitwise OR of the
colors being rendered at a pixel. It is then a straight-
forward exercise to read these pixels back and deter-
mine the stolen area costs for each of the queries.

The idea of query clustering is to batch nearby
queries together and retrieve only a small portion
of the frame buffer that suffices to compute the
interpolation function correctly for these queries. By
doing so, we avoid reading back the whole frame
buffer, which is expensive. As described below,
with query clustering, we only need to retrieve the
accumulative stolen area of a region for answering
queries in that region, thus greatly reducing the
readback time.

We subdivide the frame buffer window into a
uniform grid. Define the accumulative stolen area
(ASA) of a grid cell as the union of the stolen areas
of all points in the cell. Such a region contains all
the information needed to process natural neighbor
interpolation queries in the cell. The ASA of a cell
is equivalent to the Voronoi region of the cell, which
can be efficiently constructed by rendering for each
vertex of the cell a quarter cone and for each edge a
half “tent”, a rectangle growing upward in an angle
of 45 degree from that edge [10]. The ASA is then
computed by reading the frame buffer back into main
memory.

Combining queries that lie in this cell using
blending completes the process. As we shall see in
section 7, this optimization saves a significant amount
of time in query processing.

5 A General Approach To Compute f()

The algorithm of the previous section employs a
simple hardware-based overlay method to answer a
single natural neighbor query. In this section, we
present a more sophisticated scheme based on certain
advanced features of current graphics cards that can
compute the entire natural neighbor function over the
two dimensional grid. The key ingredient is a pseudo-
streaming algorithm to compute the interpolant at
a query point, which is based on the compound
signed decomposition technique for natural neighbor
interpolation proposed by Watson [23].

We briefly review Watson’s algorithm. The basic
operation in computing the natural neighbor weights
is to compute areas of convex polygons that are
stolen from the original Voronoi diagram. Instead
of triangulating the polygon to compute the area,
Watson’s method generates a triangle which contains

the polygon and each of its edges contains some edge
of the polygon. Further the portions of the bounding
triangle that are outside the polygon are triangles
themselves. This allows us to compute the area of
the polygon as a signed expression involving the areas
of the above triangles. This is called the compound
signed decomposition.

Let us assume that we have the Delaunay trian-
gulation of the original point set and the triangle ver-
tices are in a canonical (anticlockwise, for example)
order. Further, let us assume that for any query point
q, we can find all the Delaunay circles that contain
q. Watson’s algorithm takes a set of points P and
a query point ¢ as inputs and outputs the natural
neighbor coordinates of g.

Algorithm 2 Watson’s NNI Algorithm

for each Delaunay triangle t = (po,p1,p2) whose
circumcircle C* contains query ¢ do

Let cc be the center of C*

for each i € {0,1,2} do

Let cc;=circumcenter(q, P(i+1) mod 2;
P(i4+2) mod 2)
end for

for i = 0 to 2 do {/* for each vertex of t */}
/* Compute area of two cc with ¢, */
Let At = 0.5
Det(cC(i+1) mod 25 CC(i4+2) mod 25 CC)
A=A+ A
end for
end for
Normalize all A; to compute ¢’s natural neighbor
coordinates

Running time Both Watson’s implementation
of this algorithm and the implementation developed
by Sakov use a brute force O(n) time procedure to
determine which Delaunay circles contain a given
point. In general, if we were to construct the
arrangement of Delaunay circles, we could achieve
a query time of O(logn) (via point location) at the
cost of quadratic space complexity.

However, since the point location is performed on
an arrangement of circles, we can invoke the following
result:

THEOREM 5.1. (SHARIR [17], THEOREM 4.3)

Given a collection D of n discs in the plane, we can
preprocess it in randomized expected time O(nlog2 n)
into a data structure of expected size O(nlogn),
such that for any query point x, the k discs of D

containing = can be reported in time O((k+1)logn).

It is easy to see by planarity arguments that the
number of natural neighbors of a query ¢ is ©(k), and
hence the above query time suffices to determine all
natural neighbors of ¢ as well.

A Streaming View Watson’s algorithm pro-
vides an interesting decomposition scheme for com-
puting the contribution of each vertex. Instead of
overlaying two Voronoi diagrams (with and with-
out the query point) and computing areas of irreg-
ular convex polygons, we can perform simpler trian-
gle area computations. Another observation is that
the algorithm separately maintains the contribution
from each of ¢’s natural neighbors (potentially requir-
ing linear space) before computing the interpolated
value.

Observe that the interpolated value at q is

_ 2ifidi _ i fidgect Al
Ei A; Zz quct Af ’

where f; is the value at input site i. We can
compute the interpolated value by maintaining the
numerator and denominator, i.e., >3, > o fiAf and
Zz’ quct AE'

With this modification, Watson’s method can
be rephrased as a streaming algorithm, where the
elements of the data stream are the Delaunay circles
of the input point set. Algorithm 3 then computes the
natural neighbor interpolant in a streaming fashion,
using only constant-sized temporary storage.

(63) fe

5.1 Computing the Scalar Field using Graph-
ics Hardware. Streaming algorithms are closely re-
lated to algorithms on graphics cards. The latest
generation of graphics cards provide the user with
the ability to write C-like programs called fragment
programs that are executed by each fragment. These
programs are stateless functions - they merely op-
erate on and modify the state of the current frag-
ment (for example, its color); carrying the state be-
tween fragment program invocation is not allowed.
The only way to maintain state between fragments
is through temporary storage in textures. Thus these
programs are (severely restricted forms of) multi-pass
streaming algorithms.

Another feature of current hardware is the ability
to perform full 32-bit signed floating point operations,
thus maintaining precision. This is important for our
computation since the intermediate values that are
accumulated can get fairly large.

Algorithm 3 Streaming algorithm for natural neigh-
bor interpolation

num = 0, den = 0
for each Delaunay triangle ¢ (with vertices pg, p1
and p,) do
Let (t.,t,) be the circumcenter and circumradius
of t
if || ¢ —t¢ ||2< tr then {q is inside circumcir-

cle of t}
for i = 0to 2 do
cc; = circumcenter(q, P(i+1) mod 25
P(i+2) mod 2)
end for

for i = 0 to 2 do {/* each vertex of ¢t */}
/* Compute area of two circumcenters

with ¢, */
num = num + 0.5f;
Det(CC(z'+1) mod 25 CC(i+2) mod 2,tc)
den = den + 0.5
Det(CC(z'+1) mod 25 CC(i+2) mod 2,tc)
end for
end if
end for

fq = num/den /* f, is the natural neighbor
interpolant at ¢ */

For brevity, we will not go into the details of how
such programs are implemented on a graphics card.
Current developments in graphics programming have
led to the development of a C-like language called
Cg [8] for programming these cards, and there are
higher level constructs that allow for fully general
purpose stream programming [6]. In the sequel we
will thus describe our algorithm merely as a high level
stream algorithm.

The algorithm proceeds by drawing each Delau-
nay circle and updating the interpolant value at all
points that lie inside the circle. When all the circles
are drawn, the value at each pixel is its natural neigh-
bor interpolant. This produces the scalar field. Let
each point ¢ in the input point set contain its position
(zi,y;) and value f;.

Below in Figure 2, we show an example output
of the algorithm when presented with data points
sampled randomly from the unit square, with weight
values defined by the function
(5.4)

f(z,y) = 0.5+ 0.5cos(20y/(z — 0.5)2 + (y — 0.5)2)

which is radially symmetric around the point
(0.5,0.5) and has range [0, 1].

Algorithm 4 Hardware-assisted algorithm for Nat-
ural Neighbor Interpolation

Precompute Delaunay triangulation (and corre-
sponding Delaunay circles) of the original point set.
Set initial scalar field everywhere to zero and bind
to floating-point texture F'P.
Encode input point set p; = (2,94, fi),i =1...n
as color values and store in texture T'.
Draw Delaunay circle C passing through p;, p,, and
pn, with color value (I, m,n) that index T'.
for each Delaunay circle C' do
Draw C directly onto FP.
Fragments generated by C execute the frag-
ment program in Algorithm 3 and update their
num, den and num/den values in red, green and
blue color channels of F'P respectively.
end for
When all the circles are drawn, the blue channel
has the interpolated value f,.

(a) A plot of the function

(b) The interpolated values (grayscale: 0 (dark) to
1(white))

Figure 2: The scalar field generated by our algorithm

We do not render points outside the convex
hull of the input points, firstly because Watson’s
algorithm is not valid in this region, and secondly
because NNI interpolation itself does not make sense
outside the convex hull of the input. As a simple
preprocessing step, we compute the convex hull of
the input points and use a stencil mask to disable
rendering outside it.

6 Interpolation Over Large Domain

The main problem of using a buffer-based approach
is the loss of accuracy involved. The locations of the
input sites have to be rounded to the next pixel of the
buffer. This lost of accuracy tends to become more
significant as the number of input sites increases,
since the average distance between the sites and its
distance to the query points decreases. When the
number of input sites is large and the loss of accuracy
is not tolerable, it is recommended to break the
problem into several sub-problems using the method
we propose in the current section.

Figure 3: A uniform grid applied over the input
domain. A is the axis-aligned bounding rectangle of
the accumulative stolen area of a subdivision () and
R is a rectangle whose points have distance at most
£ from OA.

LEMMA 6.1. Let QQ be a region of the input domain
and let A be the accumulative stolen area of Q. Let
So = {si € S|Vs(s;) N A # 0}. Then, for any query
point ¢ € Q, S; C Sg where Sy is the set of natural
neighbors of q.

We omit the proof due to lack of space.

Below is an outline of the algorithm. Partition
the input domain using a grid T' and for each cell Q
of I find a set of sites Sg that suffice for any queries
in Q. This is done as follows:

1. Compute Vorsyg (i.e the accumulative stolen
area of @)) and compute the bounding rectangle
A of the accumulative stolen area of () in this
diagram, as describe in Section 4.2.

2. Read the depth buffer into the main memory,
trace 0A, and for each pixel p € A, find the
distance to its nearest site in this diagram. This
distance is the depth value of p in the depth
buffer.

Let £ denote the maximum value achieved. Gen-
erate the rectangle R, defined as all points in the
plane whose distance from 90A, under the L.,
norm is at most £ (see Fig. 3).

3. Compute Sg = SN R by checking for each s € S
if it is inside R. Clearly Sg contains all sites
whose Voronoi cell intersect 0A, and the sites
inside A. Thus, by Lemma 6.1 these are all
the sites that might participate in computing the
value of the interpolated function in Q.

Once R and Sg are found, we can construct
Vors, and answer queries in () safely with Vors,.
The process above is repeated until each cell is
finished.

Our implementation picks the size of the grid
cell of T' as 1/2 of the size of the graphics window.
As we will see in section 7, this approach incurs a
precision loss within a negligibly small degree while
still processing queries faster than the software-based
implementations when the number of sites is large.

7 Performance Analysis

Code platform In this section, we present an
empirical study of our approach. Our algorithms
were implemented in C/C++ and OpenGL 1.4. We
used two platforms for testing the code. LINUX is 1
Ghz Pentium processor with 256 MB of memory and
an Nvidia GeForce FX 5900 graphics card running
Red Hat 9.0. WINDOWS is a Pentium M 1.4Ghz
laptop running Windows XP and Cygwin 1.5, with
an Nvidia GeForce Go FX 5650 graphics card. The
laptop supports the WGL extensions required to run
the scalar field calculation of Section 5. In all cases,
we compiled the code using g++ -03. We refer to
the area-based query algorithm of Section 4 as Area,
the streaming scalar field algorithm of Section 5 as
Stream and the subdivision algorithm for large input
domain of Section 6 as Subdivision. Note that
Stream currently only runs on WINDOWS; this is due
to the lack of appropriate driver support on Linux.

Reference implementations To demonstrate
the performance of our algorithm, we choose two
software-based implementations of natural neighbor
interpolation for comparison. The first one is nni,
Watson’s implementation of NNI [22] (a standard
code base) with slight modification to allow it to
accept multiple queries. The second one is nniT,
Sakov’s [15] implementation of Watson’s algorithm
that makes use of Jonathan Shewchuk’s Triangle
package [18].

Test function The function we approximate
is the radially symmetric cos(er) (Eq. (5.4)) from
Section 5. The input sites and query points were
both randomly generated in a range of [0,1]2. Note
that care must be taken to ensure that query points
lie inside the convex hull of the input points.

Running time For all experiments, we used a
rendering window size of 512x512. In Table 1 we
compare the running times for Area, nniT and nni
on LINUX. nniT is initially superior to both Area
and nni, but as the number of sites increases, Area
starts to dominate. It is worth noting that the
algorithm Area implements is a trivial one and nniT
is one of the best known software implementations to
date. Thus the fact that Area outperforms nniT is
significant.

Table 2 presents a breakdown of the individual el-
ements of Area. It also demonstrates how clustering
queries improves the performance of the algorithm.

Breakdown | Clustered | Non-Clustered
Queries Queries

Preprocess 0.16 0.0
VoronoiDraw 0.12 0.12
QueryDraw 0.17 0.25
Readback 0.10 4.34
Counting 0.07 3.28
Total 0.62 7.99

Table 2: The breakdown of specific steps in Area. Pre-
process: Time spent on computing readback windows;
VoronoiDraw: Time spent on drawing Voronoi sites;
QueryDraw: Time spent on drawing query points; Read-
back: Time spent on readback; Counting: Time spent on
counting stolen pixels. Numbers reported for a run with
10000 input points and 10000 query points.

Table 3 compares nniT and Stream on WINDOWS.
We drop nni from this comparison, as its running
time is significantly worse even for a few queries.
Since Stream computes the entire scalar field, we
compare running times by making the same number
of queries (512x512) to nniT.

#Input Sites 5000 10000 20000
#Queries || Area | nniT nni | Area | nniT nni || Area | nniT | nni
100 0.25 0.06 0.26 0.29 0.13 0.58 0.43 0.26 -
1000 0.27 0.11 2.18 0.35 0.20 5.87 0.44 0.41 -
5000 0.35 0.32 | 11.09 0.40 0.53 27.57 0.52 0.97 -
10000 0.49 0.58 | 24.27 0.50 0.94 56.45 0.65 1.61 -
20000 0.69 1.14 | 44.04 0.71 1.84 | 112.36 0.86 3.10 -

Table 1: Total Running time (in seconds) for Area, nniT, and nni on LINUX.

The number of input points is taken

from {5000,10000,20000}, and the number of queries ranges from 100 to 20000.

#Input Sites 2000 40000 60000
#Queries || Subdivision | nniT || Subdivision | nniT || Subdivision | nniT
20000 14.47 2.98 15.40 | 13.91 16.39 38.73
40000 26.69 5.56 27.15 | 27.33 27.49 69.29
60000 35.40 8.24 38.71 | 40.67 39.08 | 129.72

Table 4: Total Running time (in seconds) for Subdivision and nniT on LINUX. The input domain is 2048 x 2048.
The number of input points is taken from {20000,40000,60000}, and the number of queries is taken from {20000,

40000, 60000}

#Inputs | nniT | Stream
5000 | 11.93 3.23
10000 | 13.71 5.6
20000 18.0 10.6

Table 3: Total running time (in seconds) for processing
512x512 queries on WINDOWS

Table 4 compares the running time for Subdi-
vision and nniT on LINUX over a large domain of
2048 x 2048. When the number of input sites is large,
Subdivision outperforms nniT.

Error analysis To determine the error incurred
by our approach, we use nniT as the reference
implementation, and measure the relative error of
queries to Area and Stream. Because of the rapidly
changing behavior of the function, and the inherent
floating point errors incurred in calculating it, for
values less than 0.01 we report absolute rather than
relative differences.

Using a 512x512 window, Stream yields an av-
erage relative error of 2.6%, with a standard devia-
tion of 0.25. The median relative error is 3.9%. For
reported values of less than 0.01 in both the refer-
ence and Stream, the average absolute difference was
0.0004. A total of 53 observations were excluded from
this calculation because they returned invalid values
(values greater than 1.0, or NaN).

Performing a similar analysis for Area, the re-
sults were similar. The average relative error was
3%, with a standard deviation of 0.29. The average
absolute error was 0.001. The median relative error

0.12

Subdivision
Scaling —————

0.1

0.08 -

0.04 -

Mean relative error
o
S

002 | /]
O L L L L L L L
0 5000 10000 15000 20000 25000 30000 35000 40000
number of sites

Figure 4: The loss of precision incurred by the
subdivision method and the scaling method

was much smaller, at 0.4%. 28 values were rejected
as invalid.

Figure 4 shows how the average error varies as the
number of sites increases for the Subdivision and
the scaling method. The loss of precision incurred
by Subdivision is always below 1% regardless of the
number of sites, thus negligible. For comparison, the
scaling method yields quite noticeable errors as the
number of sites increases.

8 Discussion

The results presented in this paper demonstrate
that the use of graphics hardware can speed up the

processing of natural neighbor interpolation queries.
Since we can also compute the scalar field induced
by the natural neighbor function, it is possible to
do range searching over a domain completely in
hardware.

One significant problem that comes up when
we use graphics cards is the bounded size of frame
buffers. The loss of precision could be fairly notice-
able, when the scaling is required to place widely
spread inputs over a large domain into the frame
buffer window. We demonstrate that the subdivision
approach can reduce the loss of precision to a negli-
gible degree while still processing queries faster than
the software-based implementations in some cases.

This paper also demonstrates the expressive
power of fragment programs. As general purpose
stream programs, their potential is only now being
exploited, and it is likely that they can facilitate prac-
tical and efficient solution of many problems in com-
putational geometry. This is a fruitful area for future
exploration.

References

[1] ABRAMOV, O. An evaluation of interpolation meth-
ods for mola data. In Meeting of the American Geo-
physical Union (AGU) (2001). Poster.

[2] AGARWAL, P., KRISHNAN, S., MUSTAFA, N., AND
VENKATASUBRAMANIAN, S. Streaming geometric
optimization using graphics hardware. In 11th Eu-
ropean Symposium on Algorithms (2003).

[3] ANTON, F., GoLp, M. C., aAND Mioc, D. Local
coordinates and interpolation in a voronoi diagram
for a set of points and line segments. In The Voronos
Conference on Analytic Number Theory and Space
Tillings (1998), pp. 9-12.

[4] Arya, S., MounT, D. M., NETANYAHU, N. S,
SILVERMAN, R., AND WU, A. An optimal algorithm
for approximate nearest neighbor searching. In
Proc. 5th ACM-SIAM Sympos. Discrete Algorithms
(1994), pp. 573-582.

[5] BOISSONNAT, J.-D., AND CAzZALS, F. Smooth sur-
face reconstruction via natural neighbour interpola-
tion of distance functions. In Symposium on Com-
putational Geometry (2000), pp. 223-232.

[6] Buck, I., AND HANRAHAN, P. Data parallel compu-
tation on graphics hardware. In Graphics Hardware
(2003).

[7] CLARE, F. http://ngwww.ucar.edu/ngdoc/ng/
ngmath/natgrid/nnhome.html.

[8] FERNANDO, R., AND KILGARD, M. The Cg Tuto-
rial: The Definitive Guide to Programmable Real-
Time Graphics. Addison-Wesley, 2003.

[9] GueEsGeN, H. W., HERTZBERG, J., LoBB, R.,
AND MANTLER, A. Buffering fuzzy maps in gis.

Spatial Cognition and Computation (Special Issue
on Vagueness, Uncertainty and Granularity) 3, 2&3
(2003), 207-222.

Horr, K., CuLver, T., KEYSER, J., LiN, M.,
AND MANOCHA, D. Fast computation of generalized
voronoi diagrams using graphics hardware. Proceed-
ings of ACM SIGGRAPH 1999 (1999).

Horr, K., CULvER, T., KEYSER, J., LIN, M.,
AND MANOCHA, D. Interactive motion planning us-
ing hardware-accelerated computation of generalized
voronoi diagrams. In Proc. IEEE International Con-
ference on Robotics and Automation (2000).
KRISHNAN, S., MUSTAFA, N., AND VENKATASUB-
RAMANIAN, S. Hardware-assisted computation of
depth contours. In Proc. 18th ACM-SIAM Symp. on
Discrete Algorithms (January 2002), pp. 558-567.
MUSTAFA, N., KRISHNAN, S., VARADARAJAN, G.,
AND VENKATASUBRAMANIAN, S. Dynamic simplifi-
cation and visualization of large maps. Intnl. Jor-
nal of Geographic Information Systems (2004, to ap-
pear).

OWEN, S. J. An implementation of natural neighbor
interpolation in three dimensions. Master’s thesis,
Brigham Young University, 1992.

[10]

[11]

[12]

[13]

[14]

[15] Sakov, P. http://www.marine.csiro.aun/
“sakov/.
[16] SAMBRIDGE, M., BRAUN, J., AND MCQUEEN, H.

Geophysical parameterization and interpolation of
irregular data using natural neighbors. Geophysical
Journal International 122 (1995), 837-857.

SHARIR, M. On k-sets in arrangements of curves and
surfaces. Disc. Comput. Geom 6 (1991), 593-613.
SHEwCHUK, J. R. Triangle: Engineering a 2D
Quality Mesh Generator and Delaunay Triangula-
tor. In Applied Computational Geometry: Towards
Geometric Engineering, M. C. Lin and D. Manocha,
Eds., vol. 1148 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, May 1996, pp. 203-222. From
the First ACM Workshop on Applied Computational
Geometry.

SiBSON, R. A vector identity for the Dirichlet
tessellation. Math. Proc. Camb. Phil. Soc 87 (1980),
151-155.

SIBSON, R. Interpreting Multivariate Data. John
Wiley & Sons, 1981, ch. A brief description of
natural neighbour interpolation, pp. 21-36.
SUKUMAR, N. The natural elemend method in solid
mechanics. Intnl. Journal for Numerical Methods in
Engg. 43, 5 (1998), 839-888.
WATSON, D.
naturalneighbour.html.
WatsoN, D. F. Computing the n-dimensional
Delaunay tesselation with application to Voronoi
polytopes. The Computer Journal 8, 2 (1981), 167—
172.

[24] WaTSoON, D. F. Contouring: a guide to the analysis

(17]

(18]

[19]

[20]

21]

[22] http://www.iamg.org/

23]

and display of spatial data. Pergamon Press, 1992.

[25] WaTsON, D. F. nngridr: An implementation of
natural neighbour implementation, vol. 1 of Natural
Neighbour Series. David Watson, 1994.

[26] WaTsoN, D. F., aND PHILLIP, G. M. Neighbour
based interpolation. Geobyte 2, 2 (1987), 12-16.

[27] Woo, M., NEIDER, J., Davis, T., AND SHREINER,
D. OpenGL(R) Programming Guide: The official
guide to learning OpenGL, Version 1,2,3. Addison-
Wesley, 1999.

