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Motivating

Non-Negative Matrix
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1 Introduction

Given a vector space model encoding of a large data set, a usual starting point for
data analysis is rank reduction [1]. However, standard rank reduction techniques
such as the QR, Singular Value (SVD), and Semi-Discrete (SDD) decompositions
and Principal Component Analysis (PCA) produce low rank bases which do not
respect the non-negativity or structure of the original data. Non-negative Matrix
Factorization (NMF) was suggested in 1997 by Lee and Seung (see [6] and [7]) to
overcome this weakness without significantly increasing the error of the associated
approximation. NMF has been typically applied to image and text data (see for
example: house and facial images in [6], handwriting samples in [9]), but has also
been used to deconstruct music tones [4]. The additive property resulting from the
non-negativity constraints of NMF has been shown to result in bases that represent
local components of the original data (i.e.- doors for houses, eyes for faces, curves of
letters and notes in a chord). In this paper, we intend to motivate the application of
NMF techniques (with noted corrections) to other types of data describing physical
phenomena.

The contents of this paper are as follows. Section 2 details the NMF objective
functions and update strategies used here and in practice. In Section 3 we illustrate
both the error and resulting basis for text and image collections. We then turn to
the specific example of NMF performed on remote sensing data in Section 4. We
emphasize recently proposed NMF alterations and compare the output obtained
with the remote sensing literature. We conclude in Section 5 by describing future
work for this promising area.

∗This work was initiated under NSF VIGRE Grant number DMS-9810751.
†Author to whom correspondence should be addressed: Department of Applied Mathematics,

University of Colorado, UCB 526, Boulder, CO 80309-0526.
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2 NMF Background and Theory

Given a non-negative matrix X of size m × n, NMF algorithms seek to find non-
negative factors W and H such that

X ≈ X̃ ≡WH, where W ∈ <m×r and H ∈ <r×n, (1)

or equivalently, the columns {xj}
n
j=1 are approximated such that

xj ≈ x̃j =Whj , where xj ∈ <
m and hj ∈ <

r. (2)

For the class of full (nonsparse) matrices, this factorization provides a reduc-
tion in storage whenever the number of vectors, r, in the basis W is chosen such
that r < nm

m+n
. We emphasize here that the problem of choosing r for NMF is

considerably more cloudy than looking at the decay of the magnitudes of the eigen-
values of the data, as is done in traditional rank reduction techniques. We have
recently explored an efficient method of determining an r based on the error of the
resulting approximation [10] and [11]. In practice, r is usually chosen such that
r ¿ min(m,n).

2.1 NMF Algorithms and Update Strategies

Using an approach similar to that used in Expectation-Maximization (EM) algo-
rithms, Lee and Seung first introduced the NMF algorithms commonly used in
practice [7]. In general, NMF algorithms seek to iteratively update the factoriza-
tion based on a given objective function (distance measure). While each objective
function could be minimized with several different iterative procedures, the update
strategies given here are shown because of their implementation ease and because
they have been proven to monotonically decrease their respective objective func-
tion. We acknowledge that other update strategies that monotonically decrease the
objective functions here are conceivable. Further, for most conceivable objective
functions, the lack of convexity in both factors W and H, means that we can, at
best expect to achieve only local minima [7].

The first, and perhaps most natural, objective function is to minimize the
(square of the) Euclidean distance between each column of X and its approximation
X̃ =WH. Using the Frobenius norm for matrices we have:

ΘE(W,H) ≡

n
∑

j=1

‖xj −Whj‖
2
2 = ‖X−WH‖2F ≡

m
∑

i=1

n
∑

j=1

(

Xij −

r
∑

l=1

WilHlj

)2

(3)

The lower bound of zero for ΘE(W,H) will only be attained when a strict
equality X = WH is obtained. Seung and Lee have chosen to balance algorithm
complexity and convergence speed by using the following update procedure:

Haj ← Haj

[WTX]aj

[WTWH]aj

, (4)

Wia ←Wia

[XHT ]ia
[WHHT ]ia

, (5)
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where [ · ]ij indicates that the noted divisions and multiplications are computed
element by element. To aid convergence, we use the newest factors of W and H

available. From an iterative standpoint, it may be helpful to write the update above
as:

H
(t+1)
aj = H

(t)
aj QE

(

W (t), XT , H(t)
)

aj
(6)

W
(t+1)
ia =W

(t)
ia QE

(

XT , H(t+1),W (t)
)

ia
(7)

When written this way, it is evident that the update consists of multiplying the
current factors by a measure of the quality of the current approximation:

QE(A,B,C) ≡
[ATBT ]ia
[AC ¦ CT ]ia

, (8)

where AC ¦ CT signifies the “correct” right or left multiplication of AC by CT .
Under these updates, the Euclidean distance objective function ΘE has been proven
[7] to be monotonically decreasing: ΘE

(

W (t+1), H(t+1)
)

≤ ΘE

(

W (t), H(t)
)

.
The second objective function that is commonly used in practice is called the

divergence, or entropy, measure:

ΘD(W,H) ≡ Div(X‖WH) ≡

m
∑

i=1

n
∑

j=1

(

Xij log
Xij

∑r
l=1 WilHlj

−Xij + [WH]ij

)

(9)

The objective function ΘD(W,H) is not a distance measure because it is not
symmetric in both X and WH. Further motivation behind this objective function
can be seen when the columns of X and the columns of the approximationWH sum
to 1, in which case ΘD(W,H) reduces to the Kullback-Leibler information measure
used in probability theory. This objective function is related to the likelihood of
generating the columns in X from the basis W and encoding coefficients H.

Again, this objective function equals its lower bound of zero only when we
have strict equality, X = WH. To balance complexity and speed, the following
iterative updates are commonly used:

H
(t+1)
aj = H

(t)
aj QD

(

[

WT (t)
]

ai
,

Xij

[W (t)H(t)]ij

)

aj

(10)

W
(t+1)
ia =W

(t)
ia QD

(

Xij

[W (t)H(t+1)]ij
,
[

HT (t+1)
]

ja

)

ia

(11)

W
(t+1)
ia ←

W
(t+1)
ia

∑

j W
(t+1)
ja

(12)

where QD(A,B)ij ≡
∑

k AikBkj = AB and the subscripts again indicate element
by element division or multiplication. Lee and Seung have also proven [7] that this
update monotonically decreases the objective function ΘD.
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A recently proposed refinement of NMF is a slight variation of the Divergence
Algorithm detailed above which seeks to impose additional constraints on the spatial
locality of the features of a data set:

ΘL(W,H) ≡

m
∑

i=1

n
∑

j=1

(

Xij log
Xij

[WH]ij
−Xij + [WH]ij + αUij

)

− β
∑

i

Vii, (13)

where α, β > 0 are some constants, U =W TW and V = HHT . We refer the reader
to [8] for further justification of the objective function ΘL(W,H). A set of update
rules that minimize this objective function are:

H
(t+1)
aj =

√

H
(t)
aj QD

(

[

WT (t)
]

ai
,

Xij

[W (t)H(t)]ij

)

aj

(14)

W
(t+1)
ia =W

(t)
ia QD

(

Xij

[W (t)H(t+1)]ij
,
[

HT (t+1)
]

ja

)

ia

(15)

W
(t+1)
ia ←

W
(t+1)
ia

∑

j W
(t+1)
ja

(16)

The structure of this LNMF update for W is identical to that of the Diver-
gence Algorithm update, using the same quality function and differing only in the
coefficient matrixH used. The update forH now uses an element by element square
root to satisfy the three additional constraints in [8].

All three of these update strategies are O(mnr) at each iteration and are
usually initialized with random factors W (0) and H(0). We have detailed additional
seeding strategies and properties/ implementation modifications in [10] and [11].

3 Standard NMF Results

Using this representation, we see that the left factorW contains a basis used for the
linear approximation of X. The right factor H is a coefficient matrix used to add up
combinations of the basis vectors in W. The non-negative constraint on W allows
us to visualize the basis columns in the same manner as the columns in the original
data matrix. This is the first benefit of NMF versus alternative factorizations
like the SVD where the basis vectors contain negative components that prevent
similar visualization. The non-negativity constraints on both W and H do not
come without an increase in both computational cost and approximation error.
However, the error of NMF is competitive with the best low rank approximation
obtained by the SVD, especially when compared to the (ordered) truncated QR.
Figure 1 shows the Frobenius error ‖X− X̃‖F for each of these three techniques for
the standard rank 3889 Classic3 text data set.

The second, and usually desired, benefit of NMF is the structure of the result-
ing basis. For the text and image applications typically used, this basis will be r
conceptual (or representative) documents/images stored in the columns of W that
can sum up to (approximately) reconstruct the original document/image collection.
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Figure 1. Frobenius error of low rank approximations to Classic3 data set.

When coupled with the constraint on the coefficient matrix H, we often arrive at
a basis consisting of interesting local features. For example, when the Local NMF
Algorithm is applied to a collection of 382 facial images, we obtain the basis (con-
sisting of eyes, lips, etc.) shown in Figure 2. The special structure illustrated in
this figure is usually the motivation behind standard NMF applications.

Figure 2. Local NMF Algorithm: basis faces (r = 24).
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4 NMF and AVIRIS Data

We now introduce a data set intended to illustrate the robustness of NMF tech-
niques. It is our hope that the reader be inspired by this application of NMF to a
physical data set and to emphasize that the suggested methods not be limited to
text and image data.

The AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) first began
operations aboard a NASA research craft in 1987. It has since become a stan-
dard instrument used for remote sensing of the Earth, collecting spectral radiance
data for characterization of the Earth’s surface and atmosphere. AVIRIS data is
often used in the fields of oceanography, environmental science, snow hydrology,
geology, volcanology, soil and land management, atmospheric and aerosol studies,
agriculture, and limnology. For each location flown over, reflectance data (used for
quantitative characterization of surface features) for 224 contiguous spectral chan-
nels (bands) is recorded. As a result, a 3-dimensional cube of data is generated for
each area analyzed by AVIRIS.1

One area that has received extensive study (see, for example [2] or [3]) with
AVIRIS flights is Cuprite, NV. Throughout this location are scattered several small
orebodies and the various geological and mineral features of the area are well doc-
umented from groundmapping. In this paper, we will consider the 200 × 200 pixel
by pixel square region near Cuprite in Figure 4 (a).

Some preprocessing of the data needed to be performed for the methods de-
scribed in this paper. First, we have followed standard AVIRIS techniques in re-
moving the bands that correspond to the regions where water vapor is so strongly
absorbing that few photons return to the AVIRIS sensor (quantified by a very low
signal-to-noise ratio) [3]. Some additional atmospheric noise may still be present
for the remaining bands, as is shown in the sample (preprocessed) profile in Fig-
ure 3 (a). Including all 40,000 pixel locations results in a 198×40000 band by pixel
matrix A containing non-negative reflectance data.2

4.1 Feature Extraction Using Random NMF Initialization

Due to the limitations of AVIRIS imagery, each location (pixel) actually consists
of a roughly 20 meter by 20 meter square. It is our goal to improve this resolution
by doing “sub-pixel” feature extraction. Based on a location’s spectral profile, we
would like to determine what primary physical components exist within the 400
square meter area that the profile represents. To determine these components we
will perform NMF on the 40,000 locations in the data set A. Using this many
locations, we hope to obtain the r = 12 components that could best be added
together to reconstruct each location’s profile as closely as possible.

Using the standard random initializations for W and H, 300 iterations of the
Euclidean distance NMF algorithm were performed to obtain the spectral basis in

1The authors are grateful to B. Kindel, E. Johnson and A.F.H. Goetz from the Center for the

Study of Earth from Space at the Univ. of Colorado for valuable conversations on AVIRIS data.
2We emphasize that reflectance is a continuous function of wavelength but that each feature

(band number) corresponds to a discrete sampling of a particular location’s spectral profile.
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(a) Sample preprocessed spectral profile.
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(b) NMF basis (random initialization).

Figure 3.

Figure 3 (b). While the 12 basis profiles shown here retain the non-negativity of
the reflectance data, they no longer maintain any of the spectral continuity that we
hoped to obtain. This is not to say that the basis profiles found will not sum up
to reconstruct the original profiles. The basis profiles found are just significantly
corrupted with noise and do not maintain the clear structure that would allow us to
determine if they correspond to other known surfaces (i.e. sand, vegetation, etc.).

4.2 Feature Extraction Using Centroid NMF Initialization

In an effort to remove some of this noise, we now apply our Spherical K-Means
initialization proposed in [10] and [11] to the data set A.3 Figure 4 (b) graphically
shows the clusterings obtained. In this figure, we are confined to a palette of 12
colors, each corresponding to a different cluster – each of the 40,000 pixels have the
shading that represents the cluster they belong to. For example, all pixels that are
nearly white (like those in the body near the upper right hand corner of Figure 4 (b))
were determined to be most similar by Spherical K-Means. Compare this picture
with the one in Figure 4 (a) which corresponds to the image of the data set A for
one particular spectral band. Here one can clearly see that some of the original
structures, such as large bodies of ore and the roadbed running through the valley
in the center of the image, were returned as a result of clustering.

Figure 5 (a) shows the 12 centroids that result after approximately 50 itera-
tions of Spherical K-Means clustering. Since these 12 profiles represent “average”
profiles representing similar locations, we do expect to see continuity maintained.
Further, these profiles are much smoother than even the original AVIRIS spectral

3It is not the intent of this paper to provide a theoretical foundation for structured initialization
or Spherical K-Means techniques. The interested reader is referred to [10] and [11].
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(a) Original (One band) (b) Spherical K-Means clustering

Figure 4. AVIRIS data set representations (r = k = 12).
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(a) Spherical K-Means centroids.
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(b) NMF basis profiles.

Figure 5. Centroid initialization (a), and the resulting NMF basis (b).

profiles – in grouping similar profiles together and taking an average we have sub-
stantially reduced the noise inherent in AVIRIS data.

We will again use the Euclidean distance NMF algorithm with r = 12 and the
same random initialization for H. However, we will now use the centroid profiles
shown here to seed the basis W. Using this Spherical K-Means initialization, 300
iterations of the Euclidean distance NMF algorithm yielded the basis profiles shown
in Figure 5 (b). These basis profiles should be compared to those obtained using
a random initialization of W in Figure 3. These new profiles are much smoother
(preserve continuity better) than those obtained earlier. The reader should also
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remark that these profiles are not the same as the centroid profiles of Figure 5.
The profiles in Figure 5 (b) may resemble their associated centroids because they
were originally initialized with them, however, the two sets of profiles differ by their
emphasis of certain features (marked by peaks and valleys in the spectral profiles).

4.3 Unmixing and Related Work

We now emphasize how the initialization-factorization approach with Spherical K-
Means and NMF done here differs from previous work done on AVIRIS images.
With the increasingly wide spread use of AVIRIS data several researchers have
begun to actively look into the problem of “unmixing” – overcoming the limited
AVIRIS pixel resolution by determining what smaller sub-elements make up a pixel.
In the literature (again, see [2] and [3]), the spectral profiles of these sub-elements are
called “endmembers” and they are usually chosen from a library of known profiles
taken from ground samples of different types of vegetation, minerals, metals, etc.
For each endmember, the resulting abundance plot is generated, where each pixel
of the plot signifies the abundance of that endmember in the pixel. The abundance
of an endmember is necessarily non-negative. Consequently, the non-negative least
squares (NNLS) technique in [5] offers a very convenient way of obtaining the best
non-negative least squares solution y to ‖Ey − x‖2, where E is the library matrix
whose columns are each endmembers.

Our work presents a new approach to this problem because we do not assume
that a library of endmembers is already in place. Ours is an unsupervised method of
actually deriving the r endmembers that best represent the given data when added
together (with unequal weights). The resulting endmembers are stored in the basis
matrix W and we do not require additional NNLS computations because each
abundance plot is already stored in the rows of the coefficient matrix H. Further,
both initializations discussed above essentially brought the rank 196 matrix A down
to a rank 12 factorization with a relative Frobenius error of less than 2.5%.

One shortcoming of our method is that the columns of H do not sum to 1.
Ideally, we would like the i-th element of column hj to correspond to the percentage
of pixel j that is made up of endmember i. Currently, each element in a column of
H corresponds to the abundance of endmember i when viewed relative to all other
endmembers. To illustrate the concept of an abundance plot, we have shown the
left factor H that resulted from 300 NMF iterations in Figure 6.

At first glance, some of these 12 abundance plots (each corresponding to the
abundance of one of the 12 endmembers) may appear to be somewhat random. How-
ever, these abundance plots correspond to endmembers which are found throughout
the image and resemble other endmembers associated with similar abundance plots.
Further, these plots are distinct because of the ore body in the lower left which con-
tains (or lacks) these endmembers. Even more interesting is the appearance of
features such as the roadbed through the center of the image. For example, in
looking at the second row of Figure 6, we see that the first endmember in the row
shows the roadbed with dark pixels while the last endmember in the row shows the
roadbed with light pixels. Here we may conclude that the roadbed is significantly
made up of the last endmember while lacking in the first.
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Figure 6. NMF coefficient matrix H.

5 Summary and Future Work

In this paper we have shown preliminary results for computing the (specially seeded)
Non-Negative Matrix Factorization on AVIRIS remote sensing data. We have found
a basis whose profiles emphasize local spectral features and use these profiles to
“unmix” the low resolution data. We emphasize here that the spectral profiles
(endmembers) that we have obtained may not make complete sense to the reader.
In general, we are more familiar with human faces and so we can recognizes noses
and ears when they appear in a face basis as in Figure 2. However, an expert in
remote sensing could likewise immediately identify the features corresponding with
the spectral profile of water and could consequently make some skilled interpretation
of the basis obtained. In this way, efficient Non-negative Matrix Factorization
techniques may be applied to data from a variety of fields and yield both a basis
and a coefficient matrix whose interpretation must then ultimately come from an
expert in that field.

Much work remains to be done in the area of Non-negative Matrix Factoriza-
tions. We have made some contributions, especially regarding structured initializa-
tion of the factors W and H, in [10] and [11]. However, in Section 2 we noted that
a particular factorization is determined by the objective function which it seeks to
minimize (maximize). Further, each objective function may have many iterative
update strategies which monotonically decrease its value, and some updates will
be inherently better (in convergence, overcoming local extrema, etc.) than others.
The application of NMF techniques to non-traditional types of data underscores
the problem of determining a “suitable” objective function constructed specifically
for that type of data. The continued discovery and exploration of these objective
functions will sufficiently refine NMF techniques for their application in practice.
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