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partial information, such as OLAP, data ware- 
housing and histograms in query optimization. 

Abstract 

Data is often stored in summarized form, as 
a histogram of aggregates (COUNTS, SUMS, 
or AVeraGes) over specified ranges. We study 
how to estimate the original detail data from 
the stored summary. 

We formulate this task as an inverse problem, 
specifying a well-defined cost function that 
has to be optimized under constraints. We 
show that our formulation includes the unifor- 
mity and independence assumptions as a spe- 
cial case, and that it can achieve better recon- 
struction results if we maximize the smooth- 
ness as opposed to the uniformity. In our 
experiments on real and synthetic datasets, 
the proposed method almost consistently out- 
performs its competitor, improving the root- 
mean-square error by up to 20 per cent for 
stock price data, and up to 90 per cent for 
smoother data sets. 

Finally, we show how to apply this theory to 
a variety of database problems that involve 
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1 Introduction 

Consider the problem of an unknown set of numbers 
xj (i = 1,. . . N), for which we are given some partial 
information. For example, xi could represent the total 
sales for the i-th day, and we could be given only the 
monthly total sales. Suppose that we also have some 
additional, a-priori information, for example, that the 
sales patterns are “smooth”, without abrupt jumps 
(i.e., xj M xi+1 ). The goal is to recover the unknown 
values as best as we canl. 

In a multi-dimensional setting, this problem be- 
comes even more interesting. Suppose that the un- 
known numbers are the counts ci,j of employees of a 
company, for each age-bracket i and for each salary- 
bracket j; suppose that we are only given the age- and 
salary-histograms, that is the counts ci,* for the i-th 
age-bracket and the counts c*,j for the j-th salary- 
bracket. The goal is to estimate the unknown ci,j 
counts. 

This sort of problem arises in a host of different 
situations. Data is summarized over discrete ranges 
to create a database of manageable size for storage, 
manipulation, and display. Often, there is a need to 
respond to queries that can be answered accurately 
only from the base data, but that must be answered 
quickly from the summarized data. The task then is 

‘The research work described in this paper was motivated 
by exactly this problem in AT&T. There was interest in esti- 
mating daily totals for some data, which historically had been 
stored aggregated over months. The base data, while available, 
was several orders of magnitude more voluminous and there- 
fore impractically expensive and time-consuming to handle. If 
reasonable guesses could quickly be made with respect to the 
daily totals, these were much preferred. The error could be esti- 
mated by computing over the full base data for selected sample 
aggregates. 

36 



to reconstruct as good an estimate of the original base 
data as possible. Applications of such a generic recon- 
struction method abound: 

l Query optimization: DBMSs typically maintain 
histograms [15] reporting the number of tuples for 
selected attribute-value ranges. Queries may se- 
,lect only specific values, or select ranges that only 
partially overlap with the value ranges used in 
the histogram. Cost estimation for such queries 
will benefit from an accurate reconstruction of 
attribute-value occurrences for the queried value(- 
range). Similarly, range queries on multiple at- 
tributes will benefit from an accurate synthesis 
and extrapolation from the histograms of value 
distributions for individual attributes. 

l Data warehousing [28]: The idea is that the cen- 
tral site will have meta-data, and condensed in- 
formation (e.g., summary data) from each partic- 
ipating site, which has detailed information. Ac- 
cessing the remote site might be slow and/or ex- 
pensive; a cheap, accurate estimate of the missing 
information is attractive. 

l Transaction recording systems: A large enterprise 
(company, hospital etc.) has huge numbers of 
detailed records (sales transaction records, pa- 
tient records etc.), which cannot be stored on-line. 
Thus, older records are either stored in tertiary 
storage, or discarded altogether. Saving summary 
data on-line, and providing a reconstruction al- 
gorithm, is an attractive alternative. This sort 
of technique is at the heart of the proposal in 
[17]. Managing such data well is a necessary pre- 
requisite for effective data mining and decision 
support. 

l Statistical databases [19], particularly in conjunc- 
tion with the DataCube operator [lo, 131: For 
example, consider Census data with income lev- 
els, given as summary tables (=histograms), with 
one histogram for each of several attributes (age, 
years in school, years in present job, geographic 
location etc.). Again, the problem is to recover 
the detail information, or at least enough of it, so 
that we can answer combined queries on multiple 
attributes. 

l Scientific databases: For example, consider 
LANDSAT images with vegetation data over 
time. Clouds sometimes obscure the view and 
hide relevant information. The problem is to re- 
cover the missing data, exploiting a-priori knowl- 
edge (e.g., that vegetation data vary smoothly 
over space and time). 

l Data integration: Two different databases often 
use different choices of attribute value ranges even 
for shared attributes. Merging such data requires 
that values be determined for the intersections of 
the respective ranges. This information is not di- 
rectly available in either database and has to be 
reconstructed. For example, one state may store 
census data regarding income distribution over 
ranges 10000-20000, 20000-30000, 30000-40000, 
and so on. Another state may use a different set 
of ranges: 15000-25000, 25000-35000, and so on. 
A company targeting a promotion at some income 
section of the population may find it convenient to 
have a single union relation over the two states. 
Since data has been aggregated over incompati- 
ble ranges in the two base relations, such a union 
cannot easily be created. 

In this paper, we show how to attack this recon- 
struction problem formally. We formulate this as an 
inverse problem (cf. [7]) so that we can draw upon 
the vast array of literature on this topic in the field of 
signal processing. 

The paper is organized as follows. In Section 2 we 
present related work on query optimization and sta- 
tistical databases. The mathematical problem formu- 
lation is given in Section 3. In Section 4 we present 
a brief introduction to the theory of inverse problems 
and some proposed solutions for database settings. In 
particular, our central Theorem regarding information 
recovery from aggregate data is established. In Section 
5 we apply the proposed methods on real and realis- 
tic (synthetic) data, and report the improvements of 
our method over naive reconstructions. In Section 6 
we present extensions of the basic technique to some 
additional scenarios. Our conclusions and future re- 
search directions are discussed in Section 7. 

2 Survey 

There is a large body of related work on query op- 
timization, where the problem is to “guess” the at- 
tribute value distribution, to make selectivity esti- 
mates for specified queries. Early query optimizers 
used the uniformity assumption [23], which provably 
leads to pessimistic results [4]. Modern query optimiz- 
ers typically use histograms [15]. The histogram of an 
attribute gives the count of records that fall into each 
predetermined sub-range (“bucket”) of the attribute 
range. Dewitt and Muralikrishna [20] examined com- 
bined histograms for multiple attributes. Ioannidis 
and Poosala [15] studied the trade-off between high 
prediction accuracy and ease of maintenance. Their 
recommendation was that histograms should maintain 
perfect information about selected attribute values, 
and assume the uniform distribution for the rest. A 
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recent, adaptive method, has been suggested by Chen 
and Roussopoulos [3]. The idea is to approximate the 
unknown value distribution with a polynomial, and 
to use query feedback to adjust the coefficients of the 
polynomial. 

Similar approaches have been used for spatial 
databases: Theodoridis and Sellis [25] suggest a coarse 
discretization of the address space; for each grid cell, 
they use the average data density, and, making the uni- 
formity assumption for each individual grid-cell, they 
estimate the performance of an R-tree. 

Related work appeared in statistical databases: 
Malvestuto [19] examined the case of multiple sum- 
mary tables, and developed algorithms to determine 
whether a given query can be evaluated to a single 
number, a range, or not at all. Ng and Ravishankar 
[21] also consider multiple summary tables, and pro- 
pose a matrix-algebra criterion to choose the best com- 
bination of summary tables to answer a query. 

Incomplete information has been studied exten- 
sively. For example, see [14] or [9]. The use of class 
structure, and other aggregation mechanisms, to store 
partial information has been presented in [16], and to 
respond to queries has been studied in [24]. All of these 
efforts have focussed on the logical nature of partial or 
missing information. In our paper, there is little quali- 
tative reasoning; the emphasis is on effective numerical 
estimation. 

Finally, there is much work on views with aggre- 
gates. For instance, [5] and [ll] consider how to answer 
queries using aggregate views, and [12] shows how to 
maintain such views incrementally. Work along these 
lines hints at the importance of the problem we con- 
sider in this paper, but is not directly relevant to our 
concerns here. 

3 Problem Formulation 

The general problem is as follows: Consider a d- 
dimensional address space, discretized, and consider 
a function x on it: x[ii,ia,. . . ,id]. 

The question is: given some partial information 
about the values of x and general a priori informa- 
tion about the nature of distribution of x values, what 
is our best estimate for its value at each point. 

Formally, the problem is as follows: 

Problem 1 (General under-specified) E&hate 

41, i2 ,..., id] ij =1,2 ,... j = 1,2, . ..d (1) 

under the constraints 

Ck(x)=O k=l,...,n (2) 

The problem is (typically) under-specified, with n 
being much smaller than the number of variables. We 

cannot obtain a unique solution unless we are willing 
to inject some additional knowledge. This additional 
knowledge comes in the form of a priori information 
regarding the nature of distribution of x values, and 
an error metric for the estimated solution. The prob- 
lem to be solved then is to minimize this error metric, 
subject to the given constraints. 

Nature of Constraints 

The specific constraints can take many different forms, 
the solutions for most of which are fairly similar. 

The simplest constraint is a summation constraint, 
where we require that the sum of specified x values 
be equal to some number. Most “rolled-up” data has 
this property, for instance, weekly sales totals are ob- 
tained as a summation of daily sales totals. Many 
histograms present counts, which are simple summa- 
tions, such as the number of times a value within the 
specific range occurred. For example, the number of 
employees whose age is between 40 and 44 (inclusive) 
is the sum of the number of employees aged 40,41, 42, 
43 and 44 respectively. 

The other commonly used constraint is an average. 
Thus, we may have the average temperature recorded 
for a week, obtained as the average of the average tem- 
peratures for each day in the week. Given the total 
number of x values being averaged over, converting a 
summation constraint to an average constraint simply 
involves a division by a constant. 

Averages can sometimes be weighted. We may have 
average income for a region defined as the average 
of the average income for the constituent counties, 
weighted by their respective populations. 

When a dimension is projected out, typically a sum- 
mation (and sometimes an average) is performed on 
the dimension projected out. Thus, we could have a 
histogram for the number of employees in each age 
bracket and a separate histogram for the number of 
employees in each salary bracket. Each item in either 
marginal histogram represents a sum of the number of 
employees with that age (salary) and with each possi- 
ble salary level (age). 

Since all of the constraints described above are fun- 
damentally similar in nature, and most can be trans- 
formed from one form to the other in a relatively 
straightforward manner, we choose to focus on a single 
well-defined problem for the bulk of this paper. 

Also, for simplicity, we concentrate on the l-d case. 
Issues with higher dimensions are considered in section 
6.1. The matrix x becomes a vector Z, and the problem 
becomes: 

Problem 2 (l-d under-specified) Estimate 
vector 

the 

z= [Xi] i= l,...,N (3) 
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subject to the constraints 

Ck(i?)=O k=l,...,n (4 

As a point of reference, consider a (time) sequence 
Z = [Xi] i = 1,. . . , N (e.g., count of occurrences of at- 
tribute value i or dollars spent on day i). Assume that 
it is hidden from us; instead, we are given the partial 
sums (e.g., attribute value histograms or weekly sums) 
&,k=l,..., n, over contiguous and non-overlapping 
“batches”. To further simplify the notation, in sev- 
eral places we will assume that the sequence is divided 
into “batches” of equal duration b (e.g., weeks, with b 
= 7).2 

The available information leads to the following 
problem formulation: 

Problem 3 (Partial sums) Estimate Z, given 

Xi = 0 k=l ,...,n (5) 
i=Bk-I+l 

where Bk is the largest value of i included in the kth 
batch. If all batches are of equal size b, then Bk = b* 
k. 

The question is: given the above partial sums Sk 
(k = l,..., n), what is our best estimate for the 
(“daily”)valuesxi (i=l,...,N)? 

4 Solution Technique 

The aim is to minimize a suitable error metric between 
the estimate and the original vector. While the specific 
error metric used is not likely to be critical, for the sake 
of specificity we focus on the root-mean-squared error. 

The theory of inverse problems [22] is applicable to 
the question at hand. Our specific case is typically 
under-constrained and thus ill-posed. Since the origi- 
nal vector is not known, we cannot use the root-mean- 
squared error as the objective function. We can force 
a unique solution by requiring minimization (or maxi- 
mization) of some criterion (“functional”) 3(Z), such 
as the entropy of the vector 1. Then, the problem is 
well defined: 

Problem 4 (l-d Regularized) Estimate I to min- 
imize (mazimize) 

3(Z) 

under the constraints 

ck(i?) =o k= l,...,n 

2The up-coming “Linear Regulariaation” method applies 
even to non-contiguous and/or overlapping and/or variable 
duration batches. However, contiguous, non-overlapping, and 
equal duration batches appear most often in practice, and we 
have chosen to restrict ourselves to this case for the bulk of the 
paper, both to simplify the mathematical notation and to assist 
the reader in developing an intuition about the problem. 

Under appropriate convexity and continuity condi- 
tions, the textbook method for solving both the min- 
imization and the maximization version of such prob- 
lems is the method of Lagrange multipliers [18]. The 
details are in a technical report [8]. The main question 
is how to choose the functional 30. The objective is to 
minimize the expected value of the root-mean-squared 
error, given what we know a-priori about the distribu- 
tion of values in the vector. 

In the following subsections we describe two pop- 
ular criteria, namely, Maximum Entropy and Linear 
Regularization. 

4.1 Maximum Entropy (ME) 

Maximum Entropy (e.g., [22, sec. 18.71) will introduce 
no additional constraints on the nature of the signal 
to be estimated. Recall that the entropy of a discrete 
probability distribution p’ = [PI, . . . , p,] is given by 

H(p3 = - c Pi l%Pi 
i 

The principle of Maximum Entropy suggests that, for 
an under-constrained problem, we could make it well- 
defined by requiring maximization of the entropy. If 
we know the grand total (sum) of the xi’s, we may 
assume that the xi’s are non-negative and normalized, 
so that they add to 1. Then, we have 

Problem 5 (Partial sums with ME) Mazimize 

T(Z) = - c xi log xi 

subject to the constraints 

c&i?) - (Sk - 5 Xi) = 0 k= l,...,n 
k&-1+1 

We can show that the piece-wise constant curve, 
with xP = X~ for all p, q in the same “batch”, is the 
solution to problem 5: 

Lemma 4.1 For Problem 5, the Maximum Entropy 
solution Z is the piece-wise constant curve. 

Proof: Omitted, for brevity (see [S]). QED 

4.2 Linear Regularization 

In many situations, it is expected that there will only 
be a small difference between successive elements of 
the vector. Most population distributions, for large 
enough populations, would follow this principle. Thus, 
for instance, the distribution of employees across age 
may follow a “bell-shaped” curve with few very old 
or very young employees, and a relatively continuous 
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Symbol Definition 
N total number of entries in the vector d 
n number of constraints 
b batch size 
Axi G xi+1 - xi: forward difference operator 

w3 a functional of the vector d 
WC’) entropy function of the given vector (=- C xi log zi) 
ck (2) the k-th constraint on the vector 5 
2 the set of signed integers (..., -1, 0, 1, . ..) 
WO the highest frequency of a signal (in rads per second) 

Table 1: Symbols and definitions 
plateau in the middle. We would be surprised if some 
large company had many 34 year old and 36 year old 
employees, but very few 35 year old employees, for 
example. 

In such situations, one can require that the solution 
Z = [xi] be smooth by minimizing the functional 

N-l 

F(2) = C (Xi - Xj+1)2 (6) 
i=l 

Intuitively, the above functional expresses our belief 
that the unknown solution 2 is rather smooth; thus, 
the functional penalizes large squared values for the 
forward differences Azi = zi+i - xi. Therefore, the 
problem becomes: Minimize Eq. 6, subject to the 
conditions of Eq. 5. The functional of Eq. 6 re- 
sults in an instance of so-called Linear Regularization 
(or ‘Phillips-Twomey method’, or ‘constrained lin- 
ear inversion method’ or ’ Tikhonov-Miller regulariza- 
tion’ [22]). In the full paper [8] we show that this min- 
imization problem leads to a matrix algebra problem, 
using Lagrange multipliers. 

4.2.1 Computational Effort 

The matrix inversion problem mentioned above in- 
volves a square matrix, with side M = N + n. In 
general, matrix inversion has complexity O(M3). This 
may be prohibitive, particularly since N may often be 
large. 

However, in our case, the matrix is of a special form: 
it is singly-bordered tri-diagonal, and the border it- 
self is block-diagonal. In this case, matrix inversion 
has complexity O(M) [22, p. 721, that is linear on the 
matrix side. Since the length of the unknown distri- 
bution, N, is significantly greater than the number of 
batches/constraints n, for all practical purposes the 
inversion effort is O(N). This is optimal: no method 
can achieve less than O(N) complexity, since it needs 
O(N) steps just to print the solution vector. 

4.2.2 Full recovery for smooth signals 

A major result in this paper is that we can achieve full 
recovery of information from the summarized data, if 
the original data is “sufficiently smooth”. More specifi- 
cally, we have the following theorem (stated informally 
at first): 

Consider a “slowly varying” discrete-time sig- 
nal that consists solely of sinusoidal compo- 
nents of period greater than or equal to some 
TO. This signal can be reconstructed per- 
fectly from sole knowledge of its contiguous 
non-overlapping partial sums taken over To/2 
samples at a time (or shorter). Thus, this 
signal can be recovered fully from an appro- 
priately coarse histogram. 

Formally, we have the following theorem, where ws 
denotes the frequency that corresponds to the period 
TO, X(ej”) denotes the Discrete-Time Fourier Trans- 
form (DTFT) of the signal 5 and 2 is the set of 
(signed) integers: 

Theorem 4.2 (Band limited recon- 
struction from contiguous non-overlapping par- 
tial sums) Consider a discrete-time signal {~(i)}~,~. 
Assume that its Discrete-Time Fourier ZYansform 
(DTFT) X(ejw) converges, and X(ej”) = 0, 5 5 
(WI 5 r. This signal can be recovered from its con- 
tiguous non-overhpping partial sums {sk}kEZ, Sk = 

Cf:b(k-I)+1 x(i), Vk E 2 

Proof: Omitted for brevity (see [8]). QED 
Our Theorem guarantees full recovery when its con- 

ditions are met, and its proof is constructive, i.e., it 
specifies a filter that achieves full recovery. However, 
this means of recovery might impractical, or the con- 
ditions of the Theorem might not be exactly satisfied. 
In this case, Linear Regularization is the next best 
approach, as we discuss in [8]. In addition to achiev- 
ing near-optimal reconstruction, Linear Regularization 
has a number of important advantages: (a) it works 
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even for overlapping/variable size batches and/or miss- 
ing summaries, and (b) it has low computational com- 
plexity, namely, linear on the number of unknowns N, 
as discussed in subsection 4.2.1. Notice that interpo- 
lation methods (like polynomial and spline interpola- 
tion) are not applicable in our case: They expect a 
“decimated” signal (e.g., zb, zzb . . .) as their input, as 
opposed to the partial sums that we currently have. 
Notice that Linear Regularization is very general, and 
it can work even in the case of “decimated” signals, 
without even needing any user-determined constants 
(like the degree of the interpolating polynomial). See 
Section 6 for a more detailed discussion of additional 
applications of Linear Regularization. 

(a) Linear Regularization 
W-t= 

‘F&SW = 

(b) Maximum Entropy 

Figure 1: Reconstruction of a Gaussian distribution: 
with Linear Regularization, we obtain almost error- 
free reconstruction. Detailed base data: dashed line 
with “+“. Reconstruction: solid line with “dia- 
mends”. Batch size b=8. 

Thus, for smooth curves, Linear Regularization in- 
deed creates an essentially error-free reconstruction. 
Fig. 1 (a)-(b) h s ows Linear Regularization and Max- 
imum Entropy, respectively, applied to an approxi- 
mately Gaussian distribution (more details on this and 
other datasets are provided in the experiments sec- 
tion). The batch size is b = 8. This is a very smooth 
dataset. Linear Regularization provides a visibly bet- 
ter reconstruction than Maximum Entropy. 

5 Experiments 

We ran several experiments to evaluate our approach. 
We used both the Maximum Entropy method and the 
Linear Regularization method. The measure of success 
was the normalized root-mean-square error @MS), 
which is a typical measure for forecasting in time se- 
ries [27]. Specifically, we define: 

112 

RMS = l/N &xi - xaetua~)~ (7) 
i=l 

where xi is the reconstructed value and xoctual,i is the 
actual value at time i. 

We ran our experiments on a number of real and 
synthetic datasets, namely: 

‘GAUSS’ dataset (synthetic): this dataset has 
been estimated by drawing samples from a Gaus- 
sian distribution and counting the number of sam- 
ples falling within a given histogram bin. We 
used N=120 bins. Attribute values, e.g., patient 
height, patient weight etc., are often distributed 
as a Gaussian, or some close variant thereof. To 
the extent that histograms are the typical means 
of storing attribute value data, this case is typical 
of the sort of situation in which one can expect the 
work in this paper to be of value. To make our ex- 
periment more realistic, rather than use a perfect 
Gaussian, we created an “approximate” Gaussian, 
of the sort one would expect from 20,000 items 
distributed according to a Gaussian distribution. 
Thus, the number of values in each bin is a little 
off from the ideal theoretical value. Furthermore, 
we normalized the data set to lie between 0 and 1 
by dividing throughout with the peak value. This 
is the example used in the previous section; see 
Figure 1. 

‘SINE’ dataset (synthetic): a sinusoid, with 
N=120 samples: xi = sin(2ni/60) i = 
0 ,*.*, 119. This is a very smooth dataset. 

‘IBM’ dataset (real): IBM closing prices, from 
http://www.ai.mit.edu/ stocks.html. The 
dataset starts from Aug. 30, 1993, and spans 120 
working days. See Figure 2(a). 

‘LYNX’ dataset (real): Canadian lynx trappings 
data per year, 1821-1934, for a total of N=114 
samples. This is a well known dataset in popula- 
tion biology - it can be found in any time-sequence 
book (e.g., [2]), as well as on-line through the “S” 
statistical package [l]. Notice that it has a pe- 
riodicity of 9-10 years. However, it is not very 
smooth: it has abrupt population explosions, with 
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significantly different peak values each time. See 
Figure 2(b). 

1 

(a) “IBM” (b) “LYNX” 

Figure 2: Plots of the two real datasets. 
The experiments were designed to answer the fol- 

lowing questions: 

1. How good is the reconstruction when we use Lin- 
ear Regularization and Maximum Entropy, and 
how does the “smoothness” constraint of Linear 
Regularization perform against the uniformity as- 
sumption (Maximum Entropy), for smooth and 
“rugged” data? 

2. How does the accuracy of reconstruction depend 
on the length of the “batch”? 

5.1 Accuracy 

We try several values of the batch size b, and we let 
each method recover the original dataset. Table 2 
shows the RMS error for the competing methods, for 
all the datasets. 

Linear Regularization consistently outperforms the 
“uniform” method, as long as the batch size b obeys 
Theorem 4.2 (that is, it is less than the half-period 
To/2 of the shortest cycle of the signal). It is a pleas- 
ant surprise that the Linear Regularization does better 
even for real datasets, like the ‘IBM’ dataset, which 
is not as smooth as the two synthetic ones. 

The relative gains increase with the smoothness of 
the target sequence, as intuitively expected: the two 
synthetic, smooth datasets enjoy the best savings (up 
to 89%), followed by the ‘LYNX’ dataset (up to 35% 
savings - notice that the dataset is somehow periodic), 
followed by the ‘IBM’ dataset, the most ‘rugged’ of 
all (savings: up to 21%). 

5.2 Dependency on batch size 

Figures 3(a)-(b) and 4(a)-(b) plot the RMS error as a 
function of the batch size b, for the synthetic and real 
datasets, respectively. This is the same information as 
in Table 2, in pictorial form. Notice that Linear Reg- 
ularization does consistently better than the unifor- 
mity/ME assumption, as long as the batch size b obeys 
our Theorem. The cross-over point for the ‘LYNX’ 
dataset is at b = 5, as expected, since the half-period 
of the major oscillation is 9.5/2=4.25. Notice that 

method Lin. Reg. ME 
(rel. % sav. 

dataset RMS over ME) RMS 
‘SINE’ b= 2 0.004 89% 0.037 
‘SINE’ b= 4 0.012 84% 0.082 
‘SINE’ b= 6 0.024 80% 0,125 
‘GAUSS’ b= 2 0.007 38% 0.012 
‘GAUSS’ b= 4 0.009 59% 0.023 
‘GAUSS’ b= 6 0.009 71% 0.034 
‘GAUSS’ b= 8 0.010 77% 0.045 
‘LYNX’ b= 2 387 35% 599 
‘LYNX’ b= 3 676 26% 926 
‘LYNX’ b= 4 927 19% 1148 
‘LYNX’ b= 5 1229 0% 1239 
‘LYNX’ b= 6 1442 -8% 1325 
‘IBM’ b= 2 0.464 8% 0.507 
‘IBM’ b= 4 0.664 13% 0.771 
‘IBM’ b= 6 0.908 14% 1.059 
‘IBM’ b= 8 0.891 17% 1.076 
‘IBM’ b= 10 1.093 21% 1.396 

Table 2: RMS errors for each method, and relative 
savings with respect to the ‘uniform=ME’. Batch size 
b, as specified. 
for the ‘IBM’, ‘GAUSS’, and ‘SINE’ datasets, Lin- 
ear Regularization is the consistent winner for a wide 
range of the b values, because these signals have most 
of their energy concentrated in low frequencies. 

6 Extensions - Discussion 

We have presented the theory of inverse problems, and 
we have shown how its special case, the Linear Reg- 
ularization, can give better reconstruction from (one- 
dimensional) summary data. In this section we list 
some additional database applications of our approach. 

6.1 Merging Histograms and OLAP. 

The theory of inverse problems can handle l-d, 2-d and 
even higher dimensionality address spaces. We have 
focused mainly on l-d signals (= time sequences), for 
two reasons: (a) they lead to a more clear descrip- 
tion of the approach and (b) they are very interesting 
in their own right (sales patterns, stock prices, etc.) 
[2, 271. However, the reduction in data size becomes 
particularly emphatic as the number of dimensions is 
increased, and the techniques presented in this paper 
become even more important. 

Here we show how we could handle higher dimen- 
sionalities. Consider the case of a relation with two 
attributes, such as, e.g., employees, with age and 
salary. Suppose that we are given one histogram 
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Figure 3: RMS error vs batch size b, for each of our 
synthetic datasets. Maximum Entropy: dashed line 
with “+“. Linear Regularization: solid line with “di- 
amonds” 
for age and another for salary, each divided into 3 
buckets (ranges). Table 3 illustrates the situation 

Table 3: Illustration of the 2-d case: Recovery of detail 
data from two l-d histograms. 

Thus, we are given the histograms S*,j and Si,, 
(which correspond to the marginal distributions) and 
we want to recover the “hidden” values of zi,j. The 
problem is formulated as follows: Given 

j 

S*,j = C “if j = 1,2,3 
i 

(8) 

(9) 

minimize the functional F() of choice. Once again, 
Maximum Entropy corresponds to the independence 

(a) ‘IBM’ 

Figure 4: RMS error vs batch size b, for each of our real 
datasets. Maximum Entropy: dashed line with “+“. 
Linear Regularization: solid line with “diamonds” 
assumption, that is, if Nemp is the total count of em- 
ployee records, ME leads to 

xi,j = Si,e * Sa,jlNemp V&j (10) 

More formally: 

Lemma 6.1 In the 2-d problem above, the Maximum 
Entropy solution leads to the independence assumption 

Proof: Using the Lagrange multipliers and solving for 
zi,j. See [8] for details. QED 
However, if the 2-d joint distribution is smooth, we 
should do better with Linear Regularization. Specif- 
ically, we require that the sum of squares of forward 
differences (both horizontally and vertically) be mini- 
mized: 

F(z) = C(Xi,j - Xi+l,j)2 + x(X&j - Xi,j+l)2 (11) 

if i,j 

The Lagrange equations will be linear, and the result- 
ing system can be solved exactly, with a matrix inver- 
sion package. 
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Aside from the database context, 2-d estimation is 
of use in image processing applications as well. For in- 
stance, it is well-known that if an image is “zoomed”, 
say each pixel is replaced by four pixels, that the re- 
sulting higher resolution image will be “grainy”. In 
image processing, a local smoothing function is typi- 
cally used to improve the zoomed image. Linear Regu- 
larization can be used to obtain exactly the same effect 
[6, 261. 

6.2 Data Warehousing 

It should be clear that the summation constraints 
Ck(Z) may be arbitrary. Our proposed approach can 
also handle overlapping intervals, as well as intervals 
of variable length. This is especially suitable in the 
case that we have to merge information from several 
sources, as in multi-databases and data warehousing 
[28]. For example, suppose that one source provides 
weekly (non-overlapping) sums, a second source pro- 
vides the exact values for some selected days, and 
a third source provides monthly sums (where month 
boundaries do not usually coincide with week bound- 
aries). The question is to find the best estimates for 
the daily values xi. The problem can easily be formu- 
lated: 

mpGW) 

under the constraints 

02) 

c weekly,k(4 = 0 k = 1, *** (13) 

Cdaily,j(Z) = 0 j = 1, . . . (14) 

C monthly,m(4 = 0 m = I,... (15) 

where F’(Z) is a suitable functional, e.g., the Linear 
Regularization functional. 

6.3 Reconstruction of missing values 

Also notice that the proposed Linear Regularization 
approach can handle not only variable length and/or 
overlapping intervals, but also missing sums and/or 
values, even when the grand total is unknown. Linear 
Regularization will use the known sums (and/or val- 
ues), and it will fill-in the missing values, to furnish 
a smooth curve. Notice that, without a given grand 
total, Maximum Entropy can not be used at alI in this 
case. 

7 Conclusions 

The main contribution of this work is a formal ap- 
proach to the recovery of information from summary 
data, and, more generally, arbitrary, partial data in the 
form of constraints. The idea is to use the machinery 
of the well-developed “inverse problem theory”, to in- 
ject a-priori knowledge about the domain, eventually 

transforming the problem into a constrained optimiza- 
tion problem. 
Additional contributions are 

Theorem 4.2, which shows that for “smooth” 
enough distributions, it is possible to have full 
recovery of information, given partial sums. 

Lemmas 4.1, 6.1, showing that the theory of in- 
verse problems includes the traditional uniformity 
and independence assumptions as special cases, 
when the Entropy is used as the cost function. 

A conceptual basis for selecting Linear Regular- 
ization as the technique of choice to obtain a 
smooth reconstruction. Further, the use of an ex- 
isting numerical analysis technique that gives the 
solution for Linear Regularization in linear time 

O(N). 

Experiments showing that, under the con- 
ditions of Theorem 4.2, Linear Regulariza- 
tion consistently outperforms the Maximum 
Entropy/uniformity assumption, not only for 
smooth data, but for “fractal”, real data as well 
(IBM stock price movements, and the lynx trap- 
pings dataset). 

Future work could examine further ties with the well 
developed field of inverse problems and image restora- 
tion. The interaction between two types of summaries, 
marginal summations and batching summations, is im- 
portant for multi-dimensional reconstruction (OLAP), 
histogram maintenance in query optimization, com- 
pression of real distributions, and numerous other 
database applications. 
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