
Paper 26-26

1

Walk Our Children to School: an Internet Data Management Application

Carol Martell, UNC Highway Safety Research Center, Chapel Hill, NC

ABSTRACT
This paper describes a complete data management and query
system wherein data is collected, maintained and dynamically
surfaced on the Web. The application integrates SAS/IntrNet®
and SAS/GRAPH® with the SAS® email and ODS facilities.
Even though all data is manually screened prior to release, the
manual effort is minimal and the people screening and
maintaining data are not SAS users. Good, old-fashioned data
management experience teamed up with common sense can use
the power of SAS to take care of the scene behind Web pages.

INTRODUCTION
The fourth annual National Walk Our Children to School Day
occurred October 6, 2000. Children, parents and community
leaders walked to school together to promote safety, health,
physical activity, and environmental concern. Participation in this
event to engender partnerships for change dramatically
increased, as in prior years. The goal of enabling synergy among
event providers and of quickly surfacing new information was
realized with a dynamic Web application.

Having encountered difficulties using other application server
products to manage data, our Web development group asked
whether SAS could handle the requirements listed below.

Event providers would register online. As plans coalesced and
more community leaders and organizations agreed to participate,
registrants would update the event descriptions. Media would be
alerted to consult the Web site to maximize coverage. All
registrants would be prompted to update after the event to
describe what actually happened in their community. All Web
submissions of event information would be immediately available
at www.walktoschool-usa.org pending manual screening. The
project would be a litmus test of integrating Web and SAS
developers. There would be two sets of clients needing special
care: the event providers, who would register through the Web,
and the Web developers, who would manage the data. SAS
software provides a variety of components that make it possible
to build a SAS application wherein the users remain completely in
a Web environment.

Application Dispatcher handles registration data management.
Manual data content screening is streamlined using email.
Registrants are provided a userid and password for maintaining
their records. A SAS/GRAPH drilldown map of the United States
is the browser entry point for dynamic data queries, providing
immediate access to new data. A dynamic Web page listing all
registrants gives Web developers update access, the means to
easily supply lost userids and passwords, and a simple way to
communicate with individual registrants. A Web form provides a
bulk email facility for general announcements to the registrants.

INITIAL REGISTRATION

The SAS Application Dispatcher broker accepts information from
the registration form in Figure 1 and executes a SAS program.
The program creates a permanent SAS table containing only that
registrant’s observation and sends email containing those values
to the Web developers for screening. The acknowledgement
seen in Figure 2 is returned to the registrant’s browser window.

Figure 1

Figure 2
Userid and password variables are created in the program and
are used as the SAS table name seen in Figure 3.

Figure 3
 With Application Dispatcher, information typed into each input
field in a Web form is passed to a SAS program. The program
handling this form data is called register.sas and resides in a
directory defined to Application Dispatcher as myjobs. This
information is specified in the html source code as:

<input type=hidden name="_program"
value="myjobs.register.sas">

To illustrate how data is passed, the html source code for the first
name field is:

<input type = "text" name = "first_name"
size = "30">

The registration form in Figure 1 has ‘Carol’ in the blank for first
name. The field name, first_name, is passed to register.sas as
the macro variable &first_name having the value ‘Carol’. The
program can assign the macro variable’s value to the SAS table
variable for first name:

f_name=&first_name;

Applicatons Development

2

To enable manual screening, register.sas sends an email
message to a project email account. The body of the message
contains all the data from the registration form for screening as
seen in Figure 4.

Figure 4
Sending email is accomplished using FILENAME and PUT
statements. Following the syntax for our Unix host system, the
fileref is:

FILENAME m EMAIL
'walk@www.walktoschool-usa.org'
SUBJECT=”&userid&pwd”;

PUT statements generate the message body:
FILE m;
PUT
‘Please screen the following registration:’;
PUT salutation f_name l_name;

MANUAL SCREENING
Content screening is carried out using email. A reviewer reads
the email message to determine whether to keep or delete the
record. The end of each message contains three hypertext links
as seen in Figure 5. The URL for each link includes parameters
equivalent to the fields in a Web form.

Figure 5
Each link executes a different SAS Application Dispatcher
program. One link adds a valid registration to the main
registration table. Another link deletes a bogus registration. The
third link sends email to the registrant acknowledging registration
and conveying the userid and password. These links allow the
users screening data to quickly release it for Web queries.
Figure 6 shows part of the email message to the registrant
conveying userid and password from our example registration.

Figure 6

SURFACING DATA
The entry point for data presentation on the Web is an image
map of the United States (Figure 7). Since the map indicates
which states have registered events, it must be recreated when
someone registers from a new state. When a record is added, if
the state of residence was not in the main table, code is executed
to recreate the image map with the new state highlighted.

Figure 7
Image maps are generated using SAS/GRAPH and the Output
Delivery System (ODS).

ODS LISTING CLOSE;
FILENAME carol 'mypath';
ODS HTML FILE='us2.html' PATH=carol;
GOPTIONS DEVICE=GIF NOBORDER;
PATTERN1 COLOR=CXFFCC00 VALUE=MSOLID ;
PROC GMAP MAP=maps.us all DATA=states;
 ID state;
 CHORO j/
 COUTLINE=black CEMPTY=black
 HTML=st NAME="us" NOLEGEND ;
RUN;
ODS HTML CLOSE;
QUIT;

Highlighted states, those with registrants, are drillable. Every link
in the map references the same htmSQL page with a state
parameter to customize the resulting page. The links are set to
the value of the variable named in the html= parameter in the
choro statement. That variable was earlier constructed using SAS
PROC SQL.
PROC SQL;

CREATE TABLE states AS

Applicatons Development

3

 SELECT
 1 AS j,
 STFIPS(state) AS state,
 'href="citylist.hsql?st='||state||’”’
 AS st
 FROM
 (SELECT DISTINCT state FROM r.registrants)
 ORDER BY state;

The North Carolina link, for example, is the following:
citylist.hsql?st=NC

When clicked, the htmSQL page queries the registration table for
all records from the state of North Carolina and return a list of
communities with registered events (Figure 8).

Figure 8

Figure 9
SAS htmSQL resembles other application server packages in
that the code for the page contains one or more query sections
with corresponding sections to display the query results for the
browser window. The browser shows the results but not the
query itself. The parameters passed in as well as the columns
selected in the {sql} query are treated as macro variables
syntactically referenced inside brackets: {&var}.

A SAS SHARE server provides access to the data and is
identified in the query tag.

{query server="host.myserver"}

The query listing communities is complicated by the fact that a
single registration can encompass events in up to five schools,
which may be in different communities. The following htmSQL
code selects a distinct list of communities in a given state.

{sql}
select distinct * from

(
 (select city1 as city,
 urlencode(trim(city1)) as cityp
 from wr.registrants where state="{&st}")
 union
 ...
 union
 (select city5 as city,
 urlencode(trim(city5)) as cityp
 from wr.registrants where state="{&st}")
)
{/sql}

The {eachrow} section formats the results of the query. Each
community returned from the above {sql} section is html-encoded
to be a link with appropriate parameters. This enables the
browser to drill down to another level of information.

{eachrow}
 <p>

 {&city}</p>
{/eachrow}
{/query}

Clicking on Chapel Hill in Figure 8 drills down to reveal the event
used in our illustrations. Getcity.hsql?sta=NC&cit=Chapel+Hill
dynamically creates Figure 9.

REGISTRANT UPDATES
Registrants may update information using their userid and
password in the login Web form seen in Figure 10.

Figure 10
Clicking the update button executes an htmSQL query, which
returns what appears to be the original registration form
(Figure 11) with the current information already typed into the
fields.

Applicatons Development

4

Figure 11
Populating the registration form with data from the registrant table
using SAS htmSQL is simple. The html code for the original form
is sandwiched into the {eachrow} section. The preceeding {sql}
section selects the correct record. Macro variables containing
values for that record are inserted into each corresponding input
field using the value tag parameter.

{sql}
 select *
 from wr.registrants
 where userid="{&u}" and pwd="{&p}"
{/sql}

{eachrow}
 …
 <input type="text" name="first_name”
 size="30" value=”{&f_name}”>
 …
{/eachrow}

Processing registrant updates follows a path nearly identical to
that for the original registration. Email reflecting the new version
of the registration is sent to the reviewer, who again clicks an
appropriate link to either accept or reject the changes. If
accepted, an update data step replaces the old record.

MAINTENANCE
An htmSQL page (Figure 12) provides a single point of access
for Web developers to perform several actions. The query lists all
registrants, providing links to update, delete or send an email
message to the registrant. Each link has parameters to select
the specific record. The {eachrow} section from the htmSQL page
to list all registrants follows:
 {eachrow}

<tr><td>{&st}</td>
 <td>{&ct}</td>
 <td>{&f_name}{&l_name}</td>
 <td><a href=
 "update.hsql?u={&userid}&p={&pwd}">
 update record
 </td>
 <td><a href=
 "remove.hsql?u={&userid}&p={&pwd}">
 delete record
 </td>
 <td><a href=
 "emailem.hsql?u={&userid}&p={&pwd}">
 email registrant
 </td>

 </tr>
 {/eachrow}

Figure 12
The email link produces a customized Web form. This dynamic
form uses SAS Application Dispatcher and the email facility to
send a message to a specific registrant. For illustration, the form
seen in Figure 13 is completed and sent. Figure 14 shows the
message received by the registrant.

Figure 13

Figure 14
All correspondence is logged with email messages to the
reviewer email account. Subject lines are constructed using
userid and password so that when messages are sorted, all
activity for a registrant appears together. The original registration
subject has no suffix. Update subject lines contain the suffix
‘update’. Figure 15 shows a documentary email message and
subject line with the ‘msg’ suffix to show there was individual
correspondence.

Applicatons Development

5

Figure 15

BULK MAIL
A bulk mail form (Figure 16) allows Web developers to send
announcements and reminders to registrants. The users are
encouraged to send and examine a trial message before clicking
‘back’ and changing the choice to ‘all registrants’. Documentary
copies of bulk email messages are sent to the reviewing mailbox
with a subject line prefix of ‘Bulkmail’.

Figure 16

LIVE QUOTES
The truly exciting innovation for the project occurred on the day of
the event. Event participants were encouraged to log on to the
Web site after completing their walk to share their thoughts and
read what others had to say (Figure 17). Whereas the event
providers, and therefore registrations, numbered in the hundreds,
the number of walkers would be in the hundreds of thousands in
the United States alone. Since this was to be an International
Walk to School Day special feature, involving seven countries,
the email screening approach used for the registration data might
not suffice to surface the data immediately. The solution used two
SAS tables for the unscreened and screened quotes. The action
parameter in the quote submission Web form pointed to an
htmSQL page, which inserted the quote and associated data as a
row into the unscreened data table. Another htmSQL page read
the unscreened data, building a Web page containing a form for
each table row, or unscreened quote (Figure 18). Each form
provided edit capabilities and the option to accept or reject the
quote. In either case, the quote was removed from the
unscreened table. Every refresh of the browser would reveal only
unscreened quotes. A mixture of published static pages and
dynamic queries were used to surface the screened quotes to the
Web (Figure 19).

Figure 17

Figure 18

 Figure 19

Applicatons Development

6

CONCLUSION
The dynamic registration data collection and retrieval system
focuses around the registration table. The event providers
generate new records and update existing ones. Web developers
update or delete records. Data-triggered updates keep the image
map current. Dynamic data retrieval occurs when visitors to the
site drill down on the image map and subsequent pages, when
registrants login to update their information, or when Web
developers use the maintenance utility. Email serves as
documentation in addition to providing a means to communicate
with registrants. The live quote system leveraged the immediacy
of the Web and htmSQL to collect and screen data with an
absolute minimum bottleneck at the point of manual review.
This application was built using SAS Application Dispatcher,
htmSQL, SAS/GRAPH, the SAS Output Delivery System and the
email facility. The only machine that actually runs The SAS
System is the application server housing the data. Registrants,
walkers submitting quotes and Web developers screening data
do not need SAS running on their desktops because everything is
processed using SAS/IntrNet technologies.

ACKNOWLEDGMENTS
The US Department of Transportation (DOT) provides funding for
www.walktoschool-usa.org through the Pedestrian and Bicycling
Information Center (www.walkinginfo.org).

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Carol Martell
UNC Highway Safety Research Center
730 Airport Rd, CB# 3430
Chapel Hill, NC 27599-3430
Work Phone: 919-962-8713
Fax: 919-962-8710
Email: carol_martell@unc.edu

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Applicatons Development

	SUGI 26 Title Page

