
Reasoning with Preference Trees over
Combinatorial Domains

Xudong Liu(B) and Miroslaw Truszczynski

Department of Computer Science, University of Kentucky,
Lexington, KY, USA

{liu,mirek}@cs.uky.edu

Abstract. Preference trees, or P-trees for short, offer an intuitive and
often concise way of representing preferences over combinatorial domains.
In this paper, we propose an alternative definition of P-trees, and for-
mally introduce their compact representation that exploits occurrences of
identical subtrees. We show that P-trees generalize lexicographic prefer-
ence trees and are strictly more expressive. We relate P-trees to answer-
set optimization programs and possibilistic logic theories. Finally, we
study reasoning with P-trees and establish computational complexity
results for the key reasoning tasks of comparing outcomes with respect
to orders defined by P-trees, and of finding optimal outcomes.

1 Introduction

Preferences are essential in areas such as constraint satisfaction, decision making,
multi-agent cooperation, Internet trading, and social choice. Consequently, pref-
erence representation languages and algorithms for reasoning about preferences
have received substantial attention [8]. When there are only a few objects (or
outcomes) to compare, it is both most direct and feasible to represent preference
orders by their explicit enumerations. The situation changes when the domain
of interest is combinatorial, that is, its elements are described in terms of com-
binations of values of issues, say x1, . . . , xn (also called variables or attributes),
with each issue xi assuming values from some set Di — its domain.

Combinatorial domains appear commonly in applications. Since their size is
exponential in the number of issues, they are often so large as to make explicit
representations of preference orders impractical. Therefore, designing languages
to represent preferences on elements from combinatorial domains in a concise
and intuitive fashion is important. Several such languages have been proposed
including penalty and possibilistic logics [4], conditional preference networks
(CP-nets) [2], lexicographic preference trees (LP-trees) [1], and answer-set opti-
mization (ASO) programs [3].

In this paper, we focus our study on combinatorial domains with binary
issues. We assume that each issue x has the domain {x,¬x} (we slightly abuse
the notation here, overloading x to stand both for an issue and for one of the
elements of its domain). Thus, outcomes in the combinatorial domain determined
by the set I = {x1, . . . , xn} of binary issues are simply complete and consistent
c© Springer International Publishing Switzerland 2015
T. Walsh (Ed.): ADT 2015, LNAI 9346, pp. 19–34, 2015.
DOI: 10.1007/978-3-319-23114-3 2



20 X. Liu and M. Truszczynski

sets of literals over I. We denote the set of all such sets of literals by CD(I). We
typically view them as truth assignments (interpretations) of the propositional
language over the vocabulary I. This allows us to use propositional formulas over
I as concise representations of sets of outcomes over I. Namely, each formula ϕ
represents the set of outcomes that satisfy ϕ (make ϕ true).

For example, let us consider preferences on possible ways to arrange a vaca-
tion. We assume that vacations are described by four binary variables:

1. activity (x1) with values water sports (x1) and hiking (¬x1),
2. destination (x2) with Florida (x2) and Colorado (¬x2),
3. time (x3) with summer (x3) and winter (¬x3), and
4. the mode of travel (x4) could be car (x4) and plane (¬x4).

A complete and consistent set of literals ¬x1¬x2x3x4 represents the hiking vaca-
tion in Colorado in the summer to which we travel by car.

To describe sets of vacations we can use formulas. For instance, vacations
that take place in the summer (x3) or involve water sports (x1) can be described
by the formula x3 ∨ x1, and vacations in Colorado (¬x2) that we travel to by
car (x4) by the formula ¬x2 ∧ x4.

Explicitly specifying strict preference orders on CD(I) becomes impractical
even for combinatorial domains with as few as 7 or 8 issues. However, the setting
introduced above allows us to specify total preorders on outcomes in terms of
desirable properties outcomes should have. For instance, a formula ϕ might be
interpreted as a definition of a total preorder in which outcomes satisfying ϕ are
preferred to those that do not satisfy ϕ (and outcomes within each of these two
groups are equivalent). More generally, we could see an expression (a sequence
of formulas)

ϕ1 > ϕ2 > . . . > ϕk

as a definition of a total preorder in which outcomes satisfying ϕ1 are preferred to
all others, among which outcomes satisfying ϕ2 are preferred to all others, etc.,
and where outcomes not satisfying any of the formulas ϕi are least preferred. This
way of specifying preferences is used (with minor modifications) in possibilistic
logic [4] and ASO programs [3]. In our example, the expression

x3 ∧ x4 > ¬x3 ∧ ¬x2

states that we prefer summer vacations (x3) where we drive by car (x4) to
vacations in winter (¬x3) in Colorado (¬x2), with all other vacations being the
least preferred.

This linear specification of preferred formulas is sometimes too restrictive.
An agent might prefer outcomes that satisfy a property ϕ to those that do not.
Within the first group that agent might prefer outcomes satisfying a property ψ1

and within the other a property ψ2. Such conditional preference can be naturally
captured by a form of a decision tree presented in Fig. 1. Leaves, shown as boxes,
represent sets of outcomes satisfying the corresponding conjunctions of formulas
(ϕ ∧ ψ1, ϕ ∧ ¬ψ1, etc.).



Reasoning with Preference Trees over Combinatorial Domains 21

ϕ

ψ1 ψ2

Fig. 1. A preference tree

Trees such as the one in Fig. 1 are called preference trees, or P-trees. They
were introduced by Fraser [5,6], who saw them as a convenient way to represent
conditional preferences. Despite their intuitive nature they have not attracted
much interest in the preference research in AI. In particular, they were not
studied for their relationship to other preference formalisms. Further, the issue of
compact representations received only an informal treatment by Fraser (P-trees
in their full representation are often impractically large), and the algorithmic
issues of reasoning with P-trees were also only touched upon.

In this paper, we propose an alternative definition of preference trees, and
formally define their compact representation that exploits occurrences of iden-
tical subtrees. P-trees are reminiscent of LP-trees [1]. We discuss the relation
between the two concepts and show that P-trees offer a much more general, flex-
ible and expressive way of representing preferences. We also discuss the relation-
ship between P-trees and ASO preferences, and between P-trees and possibilistic
logic theories. We study the complexity of the problems of comparing outcomes
with respect to orders defined by preference trees, and of problems of finding
optimal outcomes.

Our paper is organized as follows. In the next section, we formally define
P-trees and a compact way to represent them. In the following section we present
results comparing the language of P-trees with other preference formalisms. We
then move on to study the complexity of the key reasoning tasks for preferences
captured by P-trees and, finally, conclude by outlining some future research
directions.

2 Preference Trees

In this section, we define preference trees and discuss their representation. Let I
be a set of binary issues. A preference tree (P-tree, for short) over I is a binary
tree with all nodes other than leaves labeled with propositional formulas over
I. Each P-tree T defines a natural strict order �T on the set of its leaves, the
order of their enumeration from left to right.

Given an outcome M ∈ CD(I), we define the leaf of M in T as the leaf
reached by starting at the root of T and proceeding downwards. When at a
node t labeled with ϕ, if M |= ϕ, we descend to the left child of t; otherwise,
we descend to the right child of t. We denote the leaf of M in T by lT (M).



22 X. Liu and M. Truszczynski

x1≡x2

x4

l1 l2

x4

(a) Full

x1≡x2

x4

(b) Compact

Fig. 2. P-trees on vacations

We use the concept of the leaf of an outcome M in a P-tree T to define a total
preorder on CD(I). Namely, for outcomes M,M ′ ∈ CD(I), we set M �T M ′

(M is preferred to M ′), if lT (M) �T lT (M ′), and M �T M ′ (M is strictly
preferred to M ′), if lT (M) �T lT (M ′).1 We say that M is equivalent to M ′,
M ≈T M ′, if lT (M) = lT (M ′). Finally, M is optimal if there exists no M ′ such
that M ′ �T M .

Let us come back to the vacation example and assume that an agent prefers
vacations involving water sports in Florida or hiking in Colorado over the other
options. This preference is described by the formula (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2) or,
more concisely, as an equivalence x1 ≡ x2. Within each of the two groups of
vacations (satisfying the formula and not satisfying the formula), driving (x4)
is the preferred transporting mode. These preferences can be captured by the
P-tree in Fig. 2a. We note that in this example, the preferences at the second
level are unconditional, that is, they do not depend on preferences at the top
level.

To compare two outcomes, M = ¬x1¬x2¬x3x4 and M ′ = x1x2x3¬x4, we
walk down the tree and find that lT (M) = l1 and lT (M ′) = l2. Thus, we have
M �T M ′ since l1 precedes l2.

The key property of P-trees is that they can represent any total preorder on
CD(I).

Proposition 1. For every set I of binary issues, for every set D ⊆ CD(I) of
outcomes over I, and for every total preorder � on D into no more than 2n

clusters of equivalent outcomes, there is a P-tree T of depth at most n such that
the preorder determined by T on CD(I) when restricted to D coincides with �
(that is, �T |D =�).

Proof. Let � be a total preorder on a subset D ⊆ CD(I) of outcomes over I,
and let D1 � D2 � . . . � Dm be the corresponding strict ordering of clusters
of equivalent outcomes, with m ≤ 2n. If m = 1, a single-leaf tree (no decision
nodes, just a box node) represents this preorder. This tree has depth 0 and so,
the assertion holds. Let us assume then that m > 1, and let us define D′ = D1 ∪
. . . ∪D�m/2� and D′′ = D \D′. Let ϕD′ be a formula such that models of D′ are

1 We overload the symbols �T and �T by using them both for the order on the leaves
of T and the corresponding preorder on the outcomes from CD(I).



Reasoning with Preference Trees over Combinatorial Domains 23

precisely the outcomes in D′ (such a formula can be constructed as a disjunction
of conjunctions of literals, each conjunction representing a single outcome in D′).
If we place ϕD′ in the root of a P-tree, that tree represents the preorder with
two clusters, D′ and D′′, with D′ preceding D′′. Since each of D′ and D′′ has
no more than 2n−1 clusters, by induction, the preorders D1 � . . . � D�m/2� and
D�m/2�+1 � . . . � Dm can each be represented as a P-tree with depth at most
n − 1. Placing these trees as the left and the right subtrees of ϕD′ respectively
results in a P-tree of depth at most n that represents �. �

Compact Representation of P-trees. Proposition 1 shows P-trees to have
high expressive power. However, the construction described in the proof has little
practical use. First, the P-tree it produces may have a large size due to the large
sizes of labeling formulas that are generated. Second, to apply it, one would need
to have an explicit enumeration of the preorder to be modeled, and that explicit
representation in practical settings is unavailable.

However, preferences over combinatorial domains that arise in practice typ-
ically have structure that can be elicited from a user and exploited when con-
structing a P-tree representation of the preferences. First, decisions at each level
are often based on considerations involving only very few issues, often just one
or two and very rarely more than that. Moreover, the subtrees of a node that
order the “left” and the“right” outcomes are often identical or similar.

Exploiting these features often leads to much smaller representations. A com-
pact P-tree over I is a tree such that

1. every node is labeled with a Boolean formula over I, and
2. every non-leaf node t labeled with ϕ has either two outgoing edges, with the

left one meant to be taken by outcomes that satisfy ϕ and the right one by
those that do not (Fig. 3a), or one outgoing edge pointing
– straight-down (Fig. 3b), which indicates that the two subtrees of t are

identical and the formulas labeling every pair of corresponding nodes in
the two subtrees are the same,

– left (Fig. 3c), which indicates that right subtree of t is a leaf, or
– right (Fig. 3d), which indicates that left subtree of t is a leaf.

The P-tree in Fig. 2a can be collapsed as both subtrees of the root are the
same (including the labeling formulas). This leads to a tree in Fig. 2b with a

ϕ

t

(a)

ϕ

t

(b)

ϕ

t

(c)

ϕ

t

(d)

Fig. 3. Compact P-trees



24 X. Liu and M. Truszczynski

straight-down edge. We note that we drop box-labeled leaves in compact repre-
sentations of P-trees, as they no longer have an interpretation as distinct clusters.

Empty Leaves in P-trees. Given a P-tree T one can prune it so that all sets
of outcomes corresponding to its leaves are non-empty. However, keeping empty
clusters may lead to compact representations of much smaller (in general, even
exponentially smaller) size.

A full P-tree T in Fig. 4a uses labels ϕ1 = ¬x1 ∨ x3, ϕ2 = x2 ∨ ¬x4, and
ϕ3 = x2∧x3. We check that leaves l1, l2 and l3 are empty, that is, the conjunctions
ϕ1 ∧ ¬ϕ2 ∧ ϕ3, ¬ϕ1 ∧ ϕ2 ∧ ϕ3 and ¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3 are unsatisfiable. Pruning
T one obtains a compact tree T ′ (Fig. 4b) that is smaller compared to T , but
larger than T ′′ (Fig. 4c), another compact representation of T , should we allow
empty leaves and exploit the structure of T .

ϕ1

ϕ2

ϕ3 ϕ3

l1

ϕ2

ϕ3

l2

ϕ3

l3

(a) T

ϕ1

ϕ2

ϕ3

ϕ2

(b) T ′: pruned T

ϕ1

ϕ2

ϕ3

(c) T ′′

Fig. 4. P-trees with empty leaves

That example generalizes and leads to the question of finding small-sized
representations of P-trees (we conjecture that the problem in its decision version
asking about the existence of a compact representation of size at most k is NP-
complete). From now on, we assume that P-trees are given in their compact
representation.

3 P-trees and Other Formalisms

In this section we compare the preference representation language of P-trees
with other preference languages.

P-trees Generalize LP-trees. As stated earlier, P-trees are reminiscent of
LP-trees, a preference language that has received significant attention recently
[1,10,11]. In fact, LP-trees over a set I = {x1, . . . , xn} of issues are simply
special P-trees over I. Namely, an LP-tree over I can be defined as a P-tree
over I, in which all formulas labeling nodes are atoms xi or their negations ¬xi,
depending on whether xi or ¬xi is preferred, and every path from the root to a



Reasoning with Preference Trees over Combinatorial Domains 25

leaf has all atoms xi appear on it exactly once. Clearly, LP-trees are full binary
trees of depth n (assuming they have an implicit extra level of “non-decision”
nodes representing outcomes) and determine strict total orders on outcomes in
CD(I) (no indifference between different outcomes). An example of an LP-tree
over {x1, x2, x3, x4} for our vacation example is given in Fig. 5.

x1 ¬x1>x1

x3 x3>¬x3

x2 ¬x2>x2

x4

¬x4>x4

x4

x4>¬x4

x4 ¬x4>x4

x2

x2>¬x2

x2

x2>¬x2

x3 x3>¬x3

x2 ¬x2>x2

x4

¬x4>x4

x4

x4>¬x4

x4 ¬x4>x4

x2

x2>¬x2

x2

x2>¬x2

Fig. 5. A full LP-tree on vacations

In general representing preferences by LP-trees is impractical. The size of
the representation is of the same order as that of an explicit enumeration of the
preference order. However, in many cases preferences on outcomes have structure
that leads to LP-trees with similar subtrees. That structure can be exploited, as
in P-trees, to represent LP-trees compactly. Figure 6a shows a compact repre-
sentation of the LP-tree in Fig. 5. We note the presence of conditional preference
tables that make up for the lost full binary tree structure. Together with the
simplicity of the language, compact representations are essential for the prac-
tical usefulness of LP-trees. The compact representations of LP-trees translate
into compact representations of P-trees, in the sense defined above. This matter
is not central to our discussion and we simply illustrate it with an example.
The compactly represented P-tree in Fig. 6b is the counterpart to the compact
LP-tree in Fig. 6a, where ϕ = (x2 ∧ x4) ∨ (¬x2 ∧ ¬x4).

The major drawback of LP-trees is that they can capture only a very small
fraction of preference orders. One can show that the number, say G(n), of LP-
trees over n issues is

G(n) =
n−1∏

k=0

(n − k)2
k · 22k

and is asymptotically much smaller than L(n) = (2n)!, the number of all pref-
erence orders of the corresponding domain of outcomes. In fact, one can show
that

G(n)
L(n)

<
1

2(2n·(n−log n−2))
.

This is in stark contrast with Proposition 1, according to which every total
preorder can be represented by a P-tree.



26 X. Liu and M. Truszczynski

x1 ¬x1>x1

x3 x3>¬x3

x2¬x2>x2

x4
x2 :x4>¬x4¬x2 :¬x4>x4

x4 ¬x4>x4

x2 x2>¬x2

(a) A compact LP-tree

¬x1

x3

¬x2

ϕ

¬x4

x2

(b) The corresponding P-tree

Fig. 6. A compact LP-tree as a compact P-tree

Even very natural orderings, which have simple (and compact) representa-
tions by P-trees often cannot be represented as LP-trees. For instance, there is
no LP-tree on {x1, x2} representing the order 00 � 11 � 01 � 10}. However, the
P-trees (both full and compact) in Fig. 2 do specify it.

P-trees Extend ASO-Rules. The formalism of ASO-rules [3] provides an
intuitive way to express preferences over outcomes as total preorders. An ASO-
rule partitions outcomes into ordered clusters according to the semantics of the
formalism. Formally, an ASO-rule r over I is a preference rule of the form

C1 > . . . > Cm ← B, (1)

where all Ci’s and B are propositional formulas over I. For each outcome M ,
rule r of the form (1) determines its satisfaction degree. It is denoted by SDr(M)
and defined by

SDr(M) =

⎧
⎨

⎩

1, M |= ¬B

m + 1, M |= B ∧∧1≤i≤m ¬Ci

min{i : M |= Ci}, otherwise.

We say that an outcome M is weakly preferred to an outcome M ′ (M �r M ′)
if SDr(M) ≤ SDr(M ′). Thus, the notion of the satisfaction degree (or, equiva-
lently, the preference r) partitions outcomes into (in general) m + 1 clusters.2

Let us consider the domain of vacations. An agent may prefer hiking in
Colorado to water sports in Florida if she is going on a summer vacation. Such
preference can be described as an ASO-rule:

¬x1 ∧ ¬x2 > x1 ∧ x2 ← x3.

Under the semantics of ASO, this preference rule specifies that the most desirable
vacations are summer hiking vacations to Colorado and all winter vacations, the

2 This definition is a slight adaptation of the original one.



Reasoning with Preference Trees over Combinatorial Domains 27

next preferred vacations are summer water sports vacations to Florida, and the
least desirable vacations are summer hiking vacations to Florida and summer
water sports vacations to Colorado.

It is straightforward to express ASO-rules as P-trees. For an ASO-rule r of
form (1), we define a P-tree Tr as shown in Fig. 7. That is, every node in Tr has
the right child only (the left child is a leaf representing an outcome and is not
explicitly shown). Moreover, the labels of nodes from the root down are defined
as follows: ϕ1 = ¬B ∨ C1, and ϕi = Ci (2 ≤ i ≤ m).

ϕ1

ϕ2

ϕm

Fig. 7. A P-tree Tr

Theorem 1. Given an ASO-rule r, the P-tree Tr has size linear in the size of r,
and for every two outcomes M and M ′

M �ASO
r M ′ iff M �Tr

M ′

Proof. The P-tree Tr induces a total preorder �Tr
where outcomes satisfying

ϕ1 are preferred to outcomes satisfying ¬ϕ1 ∧ ϕ2, which are then preferred to
outcomes satisfying ¬ϕ1 ∧ ¬ϕ2 ∧ ϕ3, and so on. The least preferred are the ones
satisfying

∧
1≤i≤m ¬ϕi. Clearly, the order �Tr

is precisely the order �ASO
r given

by the ASO rule r. �
There are other ways of translating ASO-rules to P-trees. For instance, it

might be beneficial if the translation produced a more balanced tree. Keeping the
definitions of ϕi, 1 ≤ i ≤ m, as before and setting ϕm+1 = B ∧¬C1 ∧ . . .∧¬Cm,
we could proceed as in the proof of Proposition 1.

For example, if m = 6, we build the P-tree T b
r in Fig. 8, where ψ1 = ϕ1 ∨

ϕ2 ∨ ϕ3 ∨ ϕ4, ψ2 = ϕ1 ∨ ϕ2, ψ3 = ϕ1, ψ4 = ϕ3, ψ5 = ϕ5 ∨ ϕ6, and ψ6 = ϕ5. The
indices i’s of the formulas ψi’s indicate the order in which the corresponding
formulas are built recursively.

This P-tree representation of a preference r of the form (1) is balanced with
the height �log2(m + 1)�. Moreover, the property in Theorem 1 also holds for
the balanced tree T b

r . The size of T b
r is in O(sr log sr), where sr is the size of rule

r. It is then larger by the logarithmic factor than Tr but has a smaller depth.

Representing P-trees as RASO-Theories. Preferences represented by com-
pact P-trees cannot in general be captured by ASO preferences without a sig-
nificant (in some cases, exponential) growth in the size of the representation.



28 X. Liu and M. Truszczynski

ψ1

ψ2

ψ3 ψ4

ψ5

ψ6

Fig. 8. T b
r when m = 6

However, any P-tree can be represented as a set of ranked ASO-rules, or an
RASO-theory [3], aggregated by the Pareto method.

We first show how Pareto method is used to order outcomes with regard to
a set of unranked ASO-rules. Let M and M ′ be two outcomes. Given a set P of
unranked ASO-rules, M is weakly preferred to M ′ with respect to P , M �u

P M ′,
if SDr(M) ≤ SDr(M ′) for every r ∈ P . Moreover, M is strictly preferred to M ′,
M �u

P M ′, if M �u
P M ′ and SDr(M) < SDr(M ′) for some r ∈ P . Finally, M is

equivalent to M ′, M ≈u
P M ′, if SDr(M) = SDr(M ′) for every r ∈ P .

In general, the resulting preference relation is not total. However, by ranking
rules according to their importance total preorders can in some cases be obtained.
Let us assume P = {P1, . . . , Pg} is a collection of ranked ASO preferences divided
into g sets Pi, with each set Pi consisting of ASO-rules of rank di so that d1 <
d2 < . . . < dg. We assume that a lower rank of a preference rule indicates its
higher importance. We define M �rk

P M ′ w.r.t P if for every i, 1 ≤ i ≤ g,
M ≈u

Pi
M ′, or if for some i, 1 ≤ i ≤ g, M �u

Pi
M ′, and M ≈u

Pj
M ′ for every j,

j < i.
Given a P-tree T , we construct an RASO-theory ΦT as follows. We start with

ΦT = ∅. For every node ti in a P-tree T , we update ΦT = ΦT ∪{ϕi
di← conditions},

where ϕi is the formula labeling node ti, di, the rank of the ASO-rule, is the
depth of node ti, and conditions is the conjunction of formulas ϕj or ¬ϕj labeling
all nodes tj that have two children and that are ancestors of ti in T . We use ϕj

in the conjunction if the path from the root to ti descends from tj to its left
child. Otherwise, we use ¬ϕj .

For instance, the P-tree T in Fig. 6b gives rise to the following RASO-theory:

¬x1
1←.

x3
2←.

¬x2
3← x3. ¬x4

3← ¬x3.
(x2 ∧ x4) ∨ (¬x2 ∧ ¬x4)

4← x3. x2
4← ¬x3.

Theorem 2. For every P-tree T , the RASO-theory ΦT has size polynomial in
the size of T , and for every two outcomes M and M ′

M �RASO
ΦT

M ′ iff M �T M ′



Reasoning with Preference Trees over Combinatorial Domains 29

Proof. The claim concerning the size of ΦT is evident from the construction.
(⇐) Let us assume M �T M ′. Denote by (ϕi1 , . . . , ϕij

) the order of formulas
labeling the path determined by M from the root to a leaf. Let ϕik

, 1 ≤ k ≤ j,
be the first formula that M and M ′ evaluate differently. Then, M |= ϕik

and
M ′ �|= ϕik

. Denote by d the depth of ϕik
in T . Based on the construction of

ΦT , for every RASO-rule r of rank less than d, we have M ≈ASO
r M ′. For every

RASO-rule r of rank d, we have M �ASO
r M ′ if r comes from ϕik

, and we have
M ≈ASO

r M ′ for other rules of rank d (in fact, the satisfaction degrees of M
and M ′ on all these other rules are equal to 1). Thus, M �RASO

ΦT
M ′. If M and

M ′ evaluate all formulas ϕik
, 1 ≤ k ≤ j, the same, then M ≈RASO

ΦT
M ′ and so,

M �RASO
ΦT

M ′, too.
(⇒) Towards a contradiction, let us assume that M �RASO

ΦT
M ′ and M ′ �T

M hold. We again denote by (ϕi1 , . . . , ϕij
) the order of formulas labeling the path

determined by M from the root to a leaf. There must exist some formula ϕik
,

1 ≤ k ≤ j, such that M ′ |= ϕik
, M �|= ϕik

, and all formulas ϕ�, 1 ≤ � ≤ k − 1,
are evaluated in the same way by M and M ′. Based on RASO ordering, we have
M ′ �RASO

ΦT
M , contradiction. �

Hence, the relationship between P-trees and ASO preferences can be summa-
rized as follows. Every ASO preference rule can be translated into a P-tree, and
every P-tree into a theory of ranked ASO preference rules. In both cases, the
translations have size polynomial in the size of the input. Examining the inverse
direction, the size of the ASO rule translated from a P-tree could be exponential,
and the orders represented by ranked ASO theories strictly include the orders
induced by P-trees, as RASO-theories describe partial preorders in general.

P-trees Extend Possibilistic Logic. A possibilistic logic theory Π over a
vocabulary I is a set of preference pairs

{(φ1, a1), . . . , (φm, am)},

where every φi is a Boolean formula over I, and every ai is a real number
such that 1 ≥ a1 > . . . > am ≥ 0 (if two formulas have the same importance
level, they can be replaced by their conjunction). Intuitively, ai represents the
importance of φi, with larger values indicating higher importance.

The tolerance degree of outcome M with regard to preference pair (φ, a),
TD (φ,a)(M), is defined by

TD (φ,a)(M) =

{
1, M |= φ

1 − a, M �|= φ

Based on that, the tolerance degree of outcome M with regard to a set Π of
preference pairs, TDΠ(M), is defined by

TDΠ(M) = min{TD (φi,ai)(M) : 1 ≤ i ≤ m}.

The larger TDΠ(M), the more preferred M is.



30 X. Liu and M. Truszczynski

For example, for the domain of vacations, we might have the following set
of preference pairs {(¬x1 ∧ x3, 0.8), (x2 ∧ x4, 0.5)}. According to the possibilistic
logic interpretation, vacations satisfying both preferences are the most preferred,
those satisfying ¬x1 ∧ x3 but falsifying x2 ∧ x4 are next in the preference order,
and those falsifying ¬x1 ∧ x3 are the worst.

Similarly as for ASO-rules, we can apply different methods to encode a pos-
sibilistic logic theory in P-trees. Here we discuss one of them. We define TΠ

to be an unbalanced P-tree shown in Fig. 7 with labels ϕi defined as follows:
ϕ1 =

∧
1≤i≤m φi, ϕ2 =

∧
1≤i≤m−1 φi ∧ ¬φm, ϕ3 =

∧
1≤i≤m−2 φi ∧ ¬φm−1, and

ϕm = φ1 ∧ ¬φ2.

Theorem 3. For every possibilistic theory Π, the P-tree TΠ has size polynomial
in the size of Π, and for every two outcomes M and M ′

M �Poss
Π M ′ iff M �TΠ M ′.

Proof. It is clear that the size of the P-tree TΠ is polynomial in the size of Π.
Let mi(M,Π) denote the maximal index j such that M satisfies all φ1, . . . , φj in
Π. (If M falsifies all formulas in Π, we have mi(M,Π) = 0.) One can show that
M �Poss

Π M ′ if and only if mi(M,Π) ≥ mi(M ′,Π), and mi(M,Π) ≥ mi(M ′,Π)
if and only if M �TΠ

M ′. Therefore, the theorem follows. �

4 Reasoning Problems and Complexity

In this section, we study decision problems on reasoning about preferences
described as P-trees, and provide computational complexity results for the three
reasoning problems defined below.

Definition 1. Dominance-testing (DomTest): given a P-tree T and two dis-
tinct outcomes M and M ′, decide whether M �T M ′.

Definition 2. Optimality-testing (OptTest): given a P-tree T and an outcome
M of T , decide whether M is optimal.

Definition 3. Optimality-with-property (OptProp): given a P-tree T and
some property α expressed as a Boolean formula over the vocabulary of T , decide
whether there is an optimal outcome M that satisfies α.

Our first result shows that P-trees support efficient dominance testing.

Theorem 4. The DomTest problem can be solved in time linear in the height
of the P-tree T .

Proof. The DomTest problem can be solved by walking down the tree. The
preference between M and M ′ is determined at the first non-leaf node n where
M and M ′ evaluate ϕn differently. If such node does not exist before arriving at
a leaf, M ≈T M ′. �



Reasoning with Preference Trees over Combinatorial Domains 31

An interesting reasoning problem not mentioned above is to decide whether there
exists an optimal outcome with respect to the order given by a P-tree. However,
this problem is trivial as the answer simply depends on whether there is any
outcome at all. However, optimality testing is a different matter. Namely, we
have the following result.

Theorem 5. The OptTest problem is coNP-complete.

Proof. We show that the complementary problem, testing non-optimality of an
outcome M , is NP-complete. The membership is obvious. A witness of non-
optimality of M is any outcome M ′ such that M ′ �T M , a property that can be
verified in linear time (cf. Theorem 4). NP-hardness follows from a polynomial
time reduction from SAT [7]. Given a CNF formula Φ = c1 ∧ . . . ∧ cn over a set
of variables V = {X1, . . . , Xm}, we construct a P-tree T and an outcome M as
follows.

1. We choose X1, . . . , Xm, unsat as issues, where unsat is a new variable;
2. we define the P-tree TΦ (cf. Fig. 9) to consist of a single node labeled by

Ψ = Φ ∧ ¬unsat;
3. we set M = {unsat}.

We show that M = {unsat} is not an optimal outcome if and only if Φ =
c1 ∧ . . . ∧ cn is satisfiable.

(⇒) Assume that M = {unsat} is not an optimal outcome. Since M �|= Ψ ,
M belongs to the right leaf and there must exist an outcome M ′ such that
M ′ � M . This means that M ′ |= Φ ∧ ¬unsat. Thus, Φ is satisfiable.

(⇐) Let M ′ be a satisfying assignment to Φ over {X1, . . . , Xm}. Since no
ci ∈ Φ mentions unsat, we can assume unsat �∈ M ′. So M ′ |= Ψ and M ′ is
optimal. Thus, M = {unsat} is not optimal. �

Ψ

Fig. 9. The P-tree TΦ

Theorem 6. The OptProp problem is ΔP
2 -complete.

Proof. (Membership) The problem is in the class ΔP
2 . Let T be a given preference

tree. To check whether there is an optimal outcome that satisfies a property α, we
start at the root of T and move down. As we do so, we maintain the information
about the path we took by updating a formula ψ, which initially is set to �
(a generic tautology). Each time we move down to the left from a node t, we
update ψ to ψ ∧ ϕt, and when we move down to the right, to ψ ∧ ¬ϕt. To
decide whether to move down left or right form a node t, we check if ϕt ∧ ψ is
satisfiable by making a call to an NP oracle for deciding satisfiability. If ϕt ∧ ψ



32 X. Liu and M. Truszczynski

is satisfiable, we proceed to the left subtree and, otherwise, to the right one. We
then update t to be the node we moved to and repeat. When we reach a leaf
of the tree (which represents a cluster of outcomes), this cluster is non-empty,
consists of all outcomes satisfying ψ and all these outcomes are optimal. Thus,
returning YES, if ψ ∧ α is satisfiable and NO, otherwise, correctly decides the
problem. Since the number of oracle calls is polynomial in the size of the tree T ,
the problem is in the class ΔP

2 .
(Hardness) The maximum satisfying assignment (MSA) problem3 [9] is ΔP

2 -
complete. We first show that MSA remains ΔP

2 -hard if we restrict the input to
Boolean formulas that are satisfiable and have models other than the all-false
model (i.e., ¬x1 . . . ¬xn).

Lemma 1. The MSA problem is ΔP
2 -complete under the restriction to formulas

that are satisfiable and have models other than the all-false model.

Proof. The membership in ΔP
2 is evident. Given a Boolean formula Φ over

{x1, . . . , xn}, we define Ψ = Φ ∨ (x0 ∧ ¬x1 ∧ . . . ∧ ¬xn) over {x0, x1, . . . , xn}. It
is clear that Ψ is satisfiable, and has at least one model other than the all-false
one. Let M be a lexicographically maximum assignment satisfying Φ and assume
that M has xn = 1. Extending M by x0 = 1 yields a lexicographically maxi-
mum assignment satisfying Ψ and this assignment obviously satisfies xn = 1,
too. Conversely, if M is a lexicographically maximum assignment satisfying Ψ
and xn = 1 holds in M , then it follows that M |= Φ. Thus, M restricted to
{x1, . . . , xn} is a lexicographically maximal assignment satisfying Φ and xn = 1.
Thus, the unrestricted problem has a polynomial reduction to the restricted one.
That proves ΔP

2 -hardness. �
We now show the hardness of the OptProp problem by a reduction from

this restricted version of the MSA problem. Let Φ be a satisfiable propositional
formula over variables x1, . . . , xn that has at least one model other than the
all-false one. We construct an instance of the OptProp problem as follows. We
define the P-tree TΦ as shown in Fig. 10, where every node is labeled by formula
Φ ∧ xi, and we set α = xn.

Φ∧x1

Φ∧xn

Fig. 10. The P-tree TΦ

3 Given a Boolean formula Φ over {x1, . . . , xn}, the maximum satisfying assignment
(MSA) problem is to decide whether xn = 1 in the lexicographically maximum
satisfying assignment for Φ. (If Φ is unsatisfiable, the answer is no.).



Reasoning with Preference Trees over Combinatorial Domains 33

Our P-tree TΦ induces a total preorder consisting of a sequence of singleton
clusters, each containing an outcome satisfying Φ, followed by a single cluster
comprising all outcomes that falsify Φ and the all-false model. By our assump-
tion on Φ, the total preorder has at least two non-empty clusters. Moreover, all
singleton clusters preceding the last one are ordered lexicographically. Thus, the
optimal outcome of TΦ satisfies α if and only if the lexicographical maximum
satisfying outcome of Φ satisfies xn. �

5 Conclusion and Future Work

We investigated the qualitative preference representation language of preference
trees, or P-trees. This language was introduced in early 1990s (cf. [5,6]), but
have not received a substantial attention as a formalism for preference repre-
sentation in AI. We studied formally the issue of compact representations of
P-trees, established its relationship to other preference languages such as lex-
icographic preference trees, possibilistic logic and answer-set optimization. For
several preference reasoning problems on P-trees we derived their computational
complexity.

P-trees are quite closely related to possibilistic logic theories or preference
expressions in answer-set optimization. However, they allow for much more struc-
ture among formulas appearing in these latter two formalisms (arbitrary trees
as opposed to the linear structure of preference formulas in the other two for-
malisms). This structure allows for representations of conditional preferences.
P-trees are also more expressive than lexicographic preference trees. This is the
case even for P-trees in which every node is labeled with a formula involving
just two issues, as we illustrated with the 00 � 11 � 01 � 01 example. Such
P-trees are still simple enough to correspond well to the way humans formulate
hierarchical models of preferences, with all their decision conditions typically
restricted to one or two issues.

Our paper shows that P-trees form a rich preference formalism that deserves
further studies. Among the open problems of interest are those of learning P-trees
and their compact representations, aggregating P-trees coming from different
sources (agents), and computing optimal consensus outcomes. These problems
will be considered in the future work.

References

1. Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., Sombattheera, C.: Learning con-
ditionally lexicographic preference relations. In: ECAI, pp. 269–274 (2010)

2. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: a tool for
representing and reasoning with conditional ceteris paribus preference statements.
J. Artif. Intell. Res. 21, 135–191 (2004)

3. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: IJCAI,
pp. 867–872 (2003)

4. Dubois, D., Lang, J., Prade, H.: A brief overview of possibilistic logic. In:
ECSQARU, pp. 53–57 (1991)



34 X. Liu and M. Truszczynski

5. Fraser, N.M.: Applications of preference trees. In: Proceedings of IEEE Systems
Man and Cybernetics Conference, pp. 132–136. IEEE (1993)

6. Fraser, N.M.: Ordinal preference representations. Theory Decis. 36(1), 45–67
(1994)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

8. Kaci, S.: Working with Preferences: Less Is More. Cognitive Technologies. Springer,
Berlin (2011)

9. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36(3), 490–509 (1988)

10. Lang, J., Mengin, J., Xia, L.: Aggregating conditionally lexicographic preferences
on multi-issue domains. In: CP, pp. 973–987 (2012)

11. Liu, X., Truszczynski, M.: Aggregating Conditionally lexicographic preferences
using answer set programming solvers. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.)
ADT 2013. LNCS, vol. 8176, pp. 244–258. Springer, Heidelberg (2013)


	Reasoning with Preference Trees over Combinatorial Domains
	1 Introduction
	2 Preference Trees
	3 P-trees and Other Formalisms
	4 Reasoning Problems and Complexity
	5 Conclusion and Future Work
	References


