generated by bibbase.org
  2020 (2)
Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Sarr, P., S.; Ando, Y.; Nakamura, S.; Deshpande, S.; and Subbarao, G., V. Biology and Fertility of Soils, 56(2): 145-166. 2020.
Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification [link]Website   doi   link   bibtex   abstract  
Brachialactone isomers and derivatives of Brachiaria humidicola reveal contrasting nitrification inhibiting activity. Egenolf, K.; Conrad, J.; Schöne, J.; Braunberger, C.; Beifuß, U.; Walker, F.; Nuñez, J.; Arango, J.; Karwat, H.; Cadisch, G.; Neumann, G.; and Rasche, F. Plant Physiology and Biochemistry, 154: 491-497. 9 2020.
doi   link   bibtex   abstract  
  2019 (2)
Adequate vegetative cover decreases nitrous oxide emissions from cattle urine deposited in grazed pastures under rainy season conditions. Chirinda, N.; Loaiza, S.; Arenas, L.; Ruiz, V.; Faverín, C.; Alvarez, C.; Savian, J., V.; Belfon, R.; Zuniga, K.; Morales-Rincon, L., A.; Trujillo, C.; Arango, M.; Rao, I.; Arango, J.; Peters, M.; Barahona, R.; Costa, C.; Rosenstock, T., S.; Richards, M.; Martinez-Baron, D.; and Cardenas, L. Scientific Reports, 9(1): 1-9. 2019.
doi   link   bibtex   abstract  
Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola. Karwat, H.; Sparke, M.; Rasche, F.; Arango, J.; Nuñez, J.; Rao, I.; Moreta, D.; and Cadisch, G. Plant Physiology and Biochemistry, 137: 113-120. 4 2019.
Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola [pdf]Paper   Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola [link]Website   doi   link   bibtex   abstract  
  2018 (5)
Nitrification in agricultural soils: impact, actors and mitigation. Beeckman, F.; Motte, H.; and Beeckman, T. 2018.
Nitrification in agricultural soils: impact, actors and mitigation [pdf]Paper   doi   link   bibtex   abstract  
Further insights into underlying mechanisms for the release of biological nitrification inhibitors from sorghum roots. Di, T.; Afzal, M., R.; Yoshihashi, T.; Deshpande, S.; Zhu, Y.; and Subbarao, G., V. Plant and Soil, 423(1-2): 99-110. 2018.
Further insights into underlying mechanisms for the release of biological nitrification inhibitors from sorghum roots [pdf]Paper   doi   link   bibtex   abstract  
The microbial nitrogen-cycling network. Kuypers, M., M.; Marchant, H., K.; and Kartal, B. Nature Reviews Microbiology, 16(5): 263-276. 2018.
The microbial nitrogen-cycling network [link]Website   doi   link   bibtex   abstract  
A keystone microbial enzyme for nitrogen control of soil carbon storage. Chen, J.; Luo, Y.; Van Groenigen, K., J.; Hungate, B., A.; Cao, J.; Zhou, X.; and Wang, R., w. Science Advances, 4(8): 2-8. 2018.
doi   link   bibtex   abstract  
Addressing agricultural nitrogen losses in a changing climate. Wieder, W., R.; Gaudin, A., C., M.; Campbell, E., E.; Atallah, S., S.; Grandy, A., S.; and Bowles, T., M. Nature Sustainability, 1(8): 399-408. 2018.
Addressing agricultural nitrogen losses in a changing climate [link]Website   doi   link   bibtex  
  2017 (4)
A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors. O'Sullivan, C., A.; Duncan, E., G.; Whisson, K.; Treble, K.; Ward, P., R.; and Roper, M., M. Plant and Soil, 413: 275-287. 2017.
A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors [link]Website   doi   link   bibtex   abstract  
Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology. Subbarao, G.; Arango, J.; Masahiro, K.; Hooper, A.; Yoshihashi, T.; Ando, Y.; Nakahara, K.; Deshpande, S.; Ortiz-Monasterio, I.; Ishitani, M.; Peters, M.; Chirinda, N.; Wollenberg, L.; Lata, J.; Gerard, B.; Tobita, S.; Rao, I.; Braun, H.; Kommerell, V.; Tohme, J.; and Iwanaga, M. Plant Science, 262: 165-168. 5 2017.
Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology [link]Website   doi   link   bibtex   abstract  
Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Byrnes, R., C.; Nùñez, J.; Arenas, L.; Rao, I.; Trujillo, C.; Alvarez, C.; Arango, J.; Rasche, F.; and Chirinda, N. Soil Biology and Biochemistry, 107: 156-163. 2017.
Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches [pdf]Paper   doi   link   bibtex   abstract  
Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Byrnes, R., C.; Nùñez, J.; Arenas, L.; Rao, I.; Trujillo, C.; Alvarez, C.; Arango, J.; Rasche, F.; and Chirinda, N. Soil Biology and Biochemistry, 107: 156-163. 2017.
doi   link   bibtex   abstract  
  2016 (13)
Nitrogen losses, uptake and abundance of ammonia oxidizers in soil under mineral and organo-mineral fertilization regimes. Florio, A.; Felici, B.; Migliore, M.; Dell'Abate, M., T.; and Benedetti, A. Journal of the Science of Food and Agriculture, 96(7): 2440-2450. 5 2016.
Nitrogen losses, uptake and abundance of ammonia oxidizers in soil under mineral and organo-mineral fertilization regimes [link]Website   doi   link   bibtex   abstract  
Wide variation in nitrification activity in soil associated with different forage plant cultivars and genotypes. Bowatte, S.; Newton, P., C., D.; Hoogendoorn, C., J.; Hume, D., E.; Stewart, A., V.; Brock, S., C.; and Theobald, P., W. Grass and Forage Science, 71(1): 160-171. 3 2016.
Wide variation in nitrification activity in soil associated with different forage plant cultivars and genotypes [link]Website   doi   link   bibtex   abstract  
Transcriptional response of plasma membrane H+-ATPase genes to ammonium nutrition and its functional link to the release of biological nitrification inhibitors from sorghum roots. Zeng, H.; Di, T.; Zhu, Y.; and Subbarao, G., V. Plant and Soil, 398(1-2): 301-312. 1 2016.
Transcriptional response of plasma membrane H+-ATPase genes to ammonium nutrition and its functional link to the release of biological nitrification inhibitors from sorghum roots [link]Website   doi   link   bibtex  
Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. Thion, C., E.; Poirel, J., D.; Cornulier, T.; De Vries, F., T.; Bardgett, R., D.; and Prosser, J., I. FEMS Microbiology Ecology, 92(7): 1-11. 2016.
doi   link   bibtex   abstract  
Root extracts of Brachiaria humidicola and Saccharum spontaneum to increase N use by sugarcane. Kölln, O., T.; Franco, H., C., J.; Ferreira, D., A.; Vargas, V., P.; Castro, S., A., d., Q.; Cantarella, H.; Caldana, C.; and Trivelin, P., C., O. Scientia Agricola, 73(1): 34-42. 2016.
Root extracts of Brachiaria humidicola and Saccharum spontaneum to increase N use by sugarcane [link]Website   doi   link   bibtex   abstract  
Nitrogen Fertilizer Effects on Nitrous Oxide Emission from Southwest Brazilian Amazon Pastures. Mazzetto, A., M.; and Barneze, A., S. Journal of Fertilizers & Pesticides, 7(1): 1-5. 2016.
Nitrogen Fertilizer Effects on Nitrous Oxide Emission from Southwest Brazilian Amazon Pastures [link]Website   doi   link   bibtex  
Wide variation in nitrification activity in soil associated with different forage plant cultivars and genotypes. Bowatte, S.; Newton, P., C., D.; Hoogendoorn, C., J.; Hume, D., E.; Stewart, A., V.; Brock, S., C.; and Theobald, P., W. Grass and Forage Science, 71(1): 160-171. 2016.
doi   link   bibtex   abstract  
The Effect of Some Thai Medicinal Herb Extracts on Nitrification Inhibition. Ruanpan, W.; and Mala, T. Modern Applied Science, 10(2): 146. 2016.
The Effect of Some Thai Medicinal Herb Extracts on Nitrification Inhibition [link]Website   doi   link   bibtex   abstract  
Economic Analysis of Maize Production and Nitrogen Use Efficiency in Rotation with Brachiaria humidicola. , 106(2014): 17307. 2016.
link   bibtex  
Effect of some cover crops and their secondary metabolites on nitrous oxide (N2O ) emission by Pseudomonas denitrifiers isolated from chemically fertilized corn farm soil. Nishiyama, T.; Haba, D.; and Hashidoko, Y. , (2): 91-97. 2016.
link   bibtex  
Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. Sun, L.; Lu, Y.; Yu, F.; Kronzucker, H., J.; and Shi, W. New Phytologist, 212(3): 646-656. 2016.
doi   link   bibtex   abstract  
Economic Analysis of Maize Production and Nitrogen Use Efficiency in Rotation with Brachiaria humidicola. Burkart, S.; Enciso, K.; and Karwat, H. In Conference on International Research on Food Security, Natural Resource Management and Rural Development, volume 106, pages 17307, 2016.
link   bibtex   abstract  
Agricultural land usage transforms nitrifier population ecology. Bertagnolli, A., D.; McCalmont, D.; Meinhardt, K., A.; Fransen, S., C.; Strand, S.; Brown, S.; and Stahl, D., A. Environmental microbiology, 18(6): 1918-1929. 2016.
doi   link   bibtex   abstract  
  2015 (14)
Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil. Sterngren, A., E.; Hallin, S.; and Bengtson, P. Front Microbiol, 6: 1350. 2015.
Archaeal Ammonia Oxidizers Dominate in Numbers, but Bacteria Drive Gross Nitrification in N-amended Grassland Soil [link]Website   doi   link   bibtex   abstract  
A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Zhang, M.; Fan, C.; Li, Q.; Li, B.; Zhu, Y.; and Xiong, Z. Agriculture, Ecosystems & Environment, 201(0): 43-50. 3 2015.
A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system [link]Website   doi   link   bibtex   abstract  
Efficient rates of nitrogenous fertiliser for irrigated sweet sorghum cultivation during the post-rainy season in the semi-arid tropics. Kurai, T.; Morey, S., R.; Wani, S., P.; and Watanabe, T. European Journal of Agronomy, 71: 63-72. 2015.
Efficient rates of nitrogenous fertiliser for irrigated sweet sorghum cultivation during the post-rainy season in the semi-arid tropics [link]Website   doi   link   bibtex   abstract  
ダイズの生育過程における根圏微生物叢の変動―圃場環境下での遺伝子解析. Sugiyama, A.; and 一史, 杉., 暁. 化学と生物, 53(9): 576-577. 2015.
ダイズの生育過程における根圏微生物叢の変動―圃場環境下での遺伝子解析 [link]Website   link   bibtex  
Cropland soil–plant systems control production and consumption of methane and nitrous oxide and their emissions to the atmosphere. Hayashi, K.; Tokida, T.; Kajiura, M.; Yanai, Y.; and Yano, M. Soil Science and Plant Nutrition, 61(1): 2-33. 1 2015.
Cropland soil–plant systems control production and consumption of methane and nitrous oxide and their emissions to the atmosphere [link]Website   doi   link   bibtex  
Dynamics of Fertilizer Nitrogen Applied to Sweet Sorghum (Sorghum bicolor (L.) Moench) in the Semi-Arid Tropics. UCHINO, H.; WATANABE, T.; RAMU, K.; SAHRAWAT, K., L.; MARIMUTHU, S.; WANI, S., P.; and ITO, O. Japan Agricultural Research Quarterly: JARQ, 49(4): 409-418. 2015.
Dynamics of Fertilizer Nitrogen Applied to Sweet Sorghum (Sorghum bicolor (L.) Moench) in the Semi-Arid Tropics [link]Website   doi   link   bibtex  
Acidification in Rhizospheric Soil of Field-Grown Sorghum Decreases Nitrification Activity. WATANABE, T.; VENKATA, S., P.; SAHRAWAT, K., L.; WANI, S., P.; and ITO, O. Japan Agricultural Research Quarterly: JARQ, 49(3): 245-253. 2015.
Acidification in Rhizospheric Soil of Field-Grown Sorghum Decreases Nitrification Activity [link]Website   doi   link   bibtex   abstract  
Agricultural land usage transforms nitrifier population ecology. Bertagnolli, A., D.; McCalmont, D.; Meinhardt, K., A.; Fransen, S., C.; Strand, S.; Brown, S.; and Stahl, D., A. Environmental Microbiology,n/a-n/a. 11 2015.
Agricultural land usage transforms nitrifier population ecology [link]Website   doi   link   bibtex   abstract  
Suppression of soil nitrification by plants. Subbarao, G., V.; Yoshihashi, T.; Worthington, M.; Nakahara, K.; Ando, Y.; Sahrawat, K., L.; Rao, I., M.; Lata, J.; Kishii, M.; and Braun, H. Plant Science, 233: 155-164. 4 2015.
Suppression of soil nitrification by plants [link]Website   doi   link   bibtex   abstract  
Regulation of nitrification in soil : Advances in integration of Brachiaria hybrids to intensify agriculture and to mitigate climate change. Arango, J.; Rao, I., M.; Ishitani, M.; Miles, J.; Peters, M.; Tohme, J.; Moreta, D.; Worthington, M.; Hoek, R., V., D.; Cuchillo, M.; Hyman, G.; Tapasco, J.; and Martinez, J. In XXIII International Grassland Congress, pages Paper ID: 432, 2015.
link   bibtex  
Summary for Policymakers. Melorose, J.; Perroy, R.; and Careas, S. Volume 1 . Climate Change 2013 - The Physical Science Basis, pages 1-30. Intergovernmental Panel on Climate Change, editor(s). Cambridge University Press, 2015.
Climate Change 2013 - The Physical Science Basis [link]Website   doi   link   bibtex  
Management of land use systems for enhanced food security: conflicts, controversies and resolutions. Haring, V.; Steiner, C.; Mankaabusi, D.; and Marschner, B. Tropentag,70599. 2015.
Management of land use systems for enhanced food security: conflicts, controversies and resolutions [pdf]Website   link   bibtex   abstract  
Development of a Biochar-Plant-Extract-Based Nitrification Inhibitor and Its Application in Field Conditions. Reyes-Escobar, J.; Zagal, E.; Sandoval, M.; Navia, R.; and Muñoz, C. Sustainability, 7(10): 13585-13596. 10 2015.
Development of a Biochar-Plant-Extract-Based Nitrification Inhibitor and Its Application in Field Conditions [link]Website   doi   link   bibtex   abstract  
“ Management of land use systems for enhanced food security : conflicts , controversies and resolutions ” Biological Nitrification Inhibition ( BNI ) in Tropical Pasture and its Influence on the Recovery of Applied Nitrogen Fertiliser by Subsequent Maize . Karwat, H.; Moreta, D.; Arango, J.; Vergara, D.; Pardo, P.; Herrera, Y.; and Jonathan, N. ,70599. 2015.
link   bibtex  
  2014 (14)
Biological nitrification inhibition in sorghum: the role of sorgoleone production. Tesfamariam, T.; Yoshinaga, H.; Deshpande, S., P.; Srinivasa Rao, P.; Sahrawat, K., L.; Ando, Y.; Nakahara, K.; Hash, C., T.; and Subbarao, G., V. Plant and Soil, 379(1-2): 325-335. 2014.
Biological nitrification inhibition in sorghum: the role of sorgoleone production [pdf]Website   doi   link   bibtex  
Climate-smart crop-livestock systems for smallholders in the tropics: Integration of new forage hybrids to intensify agriculture and to mitigate climate change through regulation of nitrification in soil. Rao, I.; and Manabu Ishitani Michael Peters, Joe Tohme, Jacobo Arango, Danilo E. Moreta, Hernán Lopez, Aracely Castro, Rein van der Hoek, Siriwan Martens, Glenn Hyman, Jeimar Tapasco, Jorge Duitama, Harold Suárez, Gonzalo Borrero, Jonathan Núñez, Katharina Hartmann,, J., M. Tropical Grasslands – Forrajes Tropicales, 2: 130-132. 2014.
link   bibtex  
Developing methods to evaluate phenotypic variability in biological nitrification inhibition (BNI) capacity of Brachiaria grasses . Arango, J.; and Danilo Moreta Katharina Hartmann, Moralba Domínguez, Manabu Ishitani, John Miles, Guntur Subbarao, Michael Peters, Idupulapati Rao, J., N. Tropical Grasslands – Forrajes Tropicales, 2: 6-8. 2014.
link   bibtex  
Biological nitrification inhibition (BNI) in Brachiaria pastures: A novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change. Moreta, D., E.; and Jacobo Arango Daniel Vergara, Alvaro Rincón, Manabu Ishitani, Aracely Castro, John Miles, Michael Peters, Joe Tohme, Guntur V. Subbarao, Idupulapati M. Rao, M., S. Tropical Grasslands – Forrajes Tropicales, 2: 88-91. 2014.
link   bibtex  
The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Hedenus, F.; Wirsenius, S.; and Johansson, D., J., A. Climatic Change, 124(1-2): 79-91. 5 2014.
The importance of reduced meat and dairy consumption for meeting stringent climate change targets [link]Website   doi   link   bibtex   abstract  
Tropical forage-based systems for climate-smart livestock production in Latin America. Rao, I.; Michael Peters; Castro, A.; Subbarao, G.; Cadisch, G.; and Rincón, A. Rural21, 14(4): 12-15. 2014.
link   bibtex  
Root exudates mediated interactions belowground. Haichar, F., e., Z.; Santaella, C.; Heulin, T.; and Achouak, W. Soil Biology and Biochemistry, 77: 69-80. 2014.
Root exudates mediated interactions belowground [link]Website   doi   link   bibtex   abstract  
Nitrification Inhibition Potential of Brachiaria humidicola. Meena, H., M.; Sachdev, M., S.; Manjaiah, K., M.; and Dotaniya, M., L. National Academy Science Letters, 37(2): 113-116. 2014.
Nitrification Inhibition Potential of Brachiaria humidicola [link]Website   doi   link   bibtex   abstract  
Nitrification inhibition in tropical soil under no ‑ tillage system Inibição da nitrificação em solos tropicais sob plantio direto. Moro, E.; Alexandre, C.; Crusciol, C.; and Nascente, A., S. ,199-206. 2014.
link   bibtex  
Impact of “ Biological Nitrification Inhibition ” on N Recovery Efficiency , N Leaching and N2O Emissions Using the Example of Brachiaria humidicola. EEgenolf, K.; Karwat, H.; Rasche, F.; Cadisch, G.; Moreta, D.; Arango, J.; and Rao, I., M. In Bridging the gap between increasing knowledge and decreasing resources ”, pages 70599, 2014.
Impact of “ Biological Nitrification Inhibition ” on N Recovery Efficiency , N Leaching and N2O Emissions Using the Example of Brachiaria humidicola [link]Website   link   bibtex  
Variation in Nitrification Inhibition Activity of Neem Leaves Collected from Different Locations of Lucknow ( India ). Arora, K.; and Srivastava, A. International Journal of Plant & Soil Science, 3(5): 457-466. 2014.
link   bibtex   abstract  
Examination of nitrification inhibition by sorghum (Sorghum bicolor) in soil around its roots. Ghoneim, A.; Al-modaihsh, A.; Naeem, S.; Metwally, T.; and Gewailly, E. Proceedings of the International Academy of Ecology and Environmental Sciences, 4(3): 30-38. 2014.
link   bibtex  
Climate-smart Brachiaria grasses for improving livestock production in East Africa. Djikeng, A.; Rao, I., M.; Njarui, D.; Mutimura, M.; Caradus, J.; Ghimire, S., R.; Johnson, L.; Cardoso, J., a.; Ahonsi, M.; and Kelemu, S. Tropical Grasslands-Forrajes Tropicales, 2(1): 38–39. 2014.
Climate-smart Brachiaria grasses for improving livestock production in East Africa [link]Website   link   bibtex  
Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. Thion, C.; and Prosser, J., I. FEMS Microbiology Ecology, 90(2): 380-389. 2014.
doi   link   bibtex   abstract  
  2013 (3)
Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions. Peters, M.; and MARIO HERRERO2 KARL-HEINZ ERB3, IDUPULAPATI RAO1, GUNTUR V. SUBBARAO4, ARACELY CASTRO1, JACOBO ARANGO1, JULIÁN CHARÁ5, ENRIQUE MURGUEITIO5, REIN VAN DER HOEK1, PETER LÄDERACH1, GLENN HYMAN1, JEIMAR TAPASCO1, BERNARDO STRASSBURG6, BIRTHE PAUL1, ALVARO, M., F. Tropical Grasslands – Forrajes Tropicales, 1: 156-167. 2013.
link   bibtex  
Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Subbarao, G., V.; Nakahara, K.; Ishikawa, T.; Ono, H.; Yoshida, M.; Yoshihashi, T.; Zhu, Y.; Zakir, H., A., K., M.; Deshpande, S., P.; Hash, C., T.; and Sahrawat, K., L. Plant and Soil, 366(1-2): 243-259. 2013.
Biological nitrification inhibition (BNI) activity in sorghum and its characterization [link]Website   doi   link   bibtex   abstract  
Nitrogen management in grasslands and forage-based production systems – Role of biological nitrification inhibition (BNI). Subbarao, G., V.; and I.M. RAO2 Y. ANDO1, K.L. SAHRAWAT3, T. TESFAMARIAM1, J.C. LATA4, S. BOUDSOCQ5, J.W. MILES2, M. ISHITANI2 AND M. PETERS2, K., N. Tropical Grasslands – Forrajes Tropicales, 1: 168−174. 2013.
link   bibtex  
  2012 (3)
Interplay among NH4+ uptake, rhizosphere pH and plasma membrane H+-ATPase determine the release of BNIs in sorghum roots – possible mechanisms and underlying hypothesis. Zhu, Y.; Zeng, H.; Shen, Q.; Ishikawa, T.; and Subbarao, G. Plant and Soil, 358(1-2): 131-141. 2012.
Interplay among NH4+ uptake, rhizosphere pH and plasma membrane H+-ATPase determine the release of BNIs in sorghum roots – possible mechanisms and underlying hypothesis [link]Website   doi   link   bibtex   abstract  
Fertilizer induced nitrous oxide emissions from Vertisols and Alfisols during sweet sorghum cultivation in the Indian semi-arid tropics. Ramu, K.; Watanabe, T.; Uchino, H.; Sahrawat, K., L.; Wani, S., P.; and Ito, O. Science of The Total Environment, 438(0): 9-14. 2012.
Fertilizer induced nitrous oxide emissions from Vertisols and Alfisols during sweet sorghum cultivation in the Indian semi-arid tropics [link]Website   doi   link   bibtex   abstract  
Chapter six - Biological Nitrification Inhibition-Novel Strategy to Regulate Nitrification in Agricultural Systems. Subbarao, G., V.; Sahrawat, K., L.; Nakahara, K.; Ishikawa, T.; Kishii, M.; Rao, I., M.; Hash, C., T.; George, T., S.; Srinivasa Rao, P.; Nardi, P.; Bonnett, D.; Berry, W.; Suenaga, K.; and Lata, J., C. Volume 114 . Advances in Agronomy, pages 249-302. Donald, L., S., editor(s). Academic Press, 2012.
Advances in Agronomy [link]Website   doi   link   bibtex   abstract  
  2011 (1)
Production of wheat-Leymus racemosus translocation lines. Kishii, M. eWIS, 111: 11-13. 2011.
link   bibtex  
  2010 (3)
Nitrification inhibition activity, a novel trait in root exudates of rice. Tanaka, J., P.; Nardi, P.; and Wissuwa, M. AoB Plants, 2010: plq014. 11 2010.
Nitrification inhibition activity, a novel trait in root exudates of rice [link]Website   doi   link   bibtex   abstract  
生物的硝化抑制作用 硝化を制御する新たなアプローチ. 石川隆之; Subarao, G.; and 伊藤, 治. 農業技術, 65(11): 397-402. 2010.
生物的硝化抑制作用 硝化を制御する新たなアプローチ [link]Website   link   bibtex  
Nitrification along a grassland gradient: Inhibition found in matgrass swards. Smits, N., A., C.; Hefting, M., M.; Kamst-van Agterveld, M., P.; Laanbroek, H., J.; Paalman, A., J.; and Bobbink, R. Soil Biology and Biochemistry, 42(4): 635-641. 2010.
Nitrification along a grassland gradient: Inhibition found in matgrass swards [link]Website   doi   link   bibtex   abstract  
  2009 (6)
Biological nitrification inhibition (BNI) - Is there potential for genetic interventions in the Triticeae?. Subbarao, G., V.; Kishii, M.; Nakahara, K.; Ishikawa, T.; Ban, T.; Tsujimoto, H.; George, T., S.; Berry, W., L.; Hash, C., T.; and Ito, O. Breeding Science, 59(5): 529-545. 2009.
link   bibtex  
Modelling approach to analyse the effects of nitrification inhibition on primary production. Boudsocq, S.; Lata, J., C.; Mathieu, J.; Abbadie, L.; and Barot, S. Functional Ecology, 23(1): 220-230. 2009.
Modelling approach to analyse the effects of nitrification inhibition on primary production [link]Website   doi   link   bibtex   abstract  
Biochemical cycling in the rhizosphere having an impact on global change. Philippot, L.; Hallin, S.; Börjesson, G.; and Baggs, E., M. Plant and Soil, 321(1-2): 61-81. 2009.
link   bibtex   abstract  
Evidence for biological nitrification inhibition in Brachiaria pastures. Subbarao, G., V.; Nakahara, K.; Hurtado, M., P.; Ono, H.; Moreta, D., E.; Salcedo, A., F.; Yoshihashi, A., T.; Ishikawa, T.; Ishitani, M.; Ohnishi-Kameyama, M.; Yoshida, M.; Rondon, M.; Rao, I., M.; Lascano, C., E.; Berry, W., L.; and Ito, O. Proceedings of the National Academy of Sciences, 106(41): 17302-17307. 10 2009.
Evidence for biological nitrification inhibition in Brachiaria pastures [link]Website   doi   link   bibtex   abstract  
Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms. Gopalakrishnan, S.; WATANABE, T.; PEARSE, S., J.; ITO, O.; HOSSAIN, Z., A., K., M.; and SUBBARAO, G., V. Soil Science & Plant Nutrition Volume Issue, Pages , 55(5): 725-733. 2009.
link   bibtex   abstract  
Inhibition of net nitrification activity in a Mediterranean woodland: possible role of chemicals produced by Arbutus unedo. Castaldi, S.; Carfora, A.; Fiorentino, A.; Natale, A.; Messere, A.; Miglietta, F.; and Cotrufo, M., F. Plant and Soil, 315(1-2): 273-283. 2 2009.
Inhibition of net nitrification activity in a Mediterranean woodland: possible role of chemicals produced by Arbutus unedo [link]Website   doi   link   bibtex   abstract  
  2008 (5)
Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Subbarao, G., V.; Nakahara, K.; Ishikawa, T.; Yoshihashi, T.; Ito, O.; Ono, H.; Ohnishi-Kameyama, M.; Yoshida, M.; Kawano, N.; and Berry, W., L. Plant and Soil, 313(1-2): 89-99. 2008.
link   bibtex   abstract  
農業生態系での硝酸化成および亜酸化窒素放出制御のための植物を使った戦略 —生物的硝化抑制(BNI)—. Subbarao, G.; スバラオ, グ.; and 伊藤治 農業および園芸, 83(3): 335-345. 2008.
link   bibtex  
Relevance of genetically modified crops in light of future environmental and legislative challenges to the agri-environment. O'Brien, M.; and Mullins, E. Annals of Applied Biology,online first. 2008.
link   bibtex   abstract  
Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). Subbarao, G., V.; Pearse, S., J.; Gopalakrishnan, S.; Ito, O.; Ishikawa, T.; Kawano, N.; Nakahara, K.; Yoshihashi, T.; Ono, H.; and Yoshida, M. New Phytologist, 180(2): 442-451. 2008.
link   bibtex   abstract  
  2007 (7)
Plant-based manipulation of nitrification in soil: a new approach to managing N loss?. Fillery, I., R., P. Plant and Soil, 294(1-2): 1-4. 5 2007.
Plant-based manipulation of nitrification in soil: a new approach to managing N loss? [link]Website   doi   link   bibtex   abstract  
Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Toyomasu, T.; Tsukahara, M.; Kaneko, A.; Niida, R.; Mitsuhashi, W.; Dairi, T.; Kato, N.; and Sassa, T. Proc Natl Acad Sci U S A, 104(9): 3084-3088. 2007.
Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi [link]Website   link   bibtex   abstract  
Nitrification Inhibitors from the Root Tissues of Brachiaria humidicola , a Tropical Grass. Gopalakrishnan, S.; Subbarao, G., V.; Nakahara, K.; Yoshihashi, T.; Ito, O.; Maeda, I.; Ono, H.; and Yoshida, M. Journal of Agricultural and Food Chemistry, 55(4): 1385-1388. 2 2007.
Nitrification Inhibitors from the Root Tissues of Brachiaria humidicola , a Tropical Grass [link]Website   doi   link   bibtex   abstract  
NH 4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Subbarao, G., V.; Wang, H., Y.; Ito, O.; Nakahara, K.; and Berry, W., L. Plant and Soil, 290(1-2): 245-257. 2007.
link   bibtex   abstract  
Can biologically produced nitrification inhibitors (BNI) suppress soil microbial populations other than nitrifiers? A case study with Brachiaria humidicola. Gopalakrishnann, S.; and Guntur, S., G., 武., 治. In 日本土壌肥料学会2007年度大会, pages 94(10-11), 2007.
link   bibtex  
Biological nitrification inhibition (BNI)—is it a widespread phenomenon?. Subbarao, G., V.; Rondon, M.; Ito, O.; Ishikawa, T.; Rao, I., M.; Nakahara, K.; Lascano, C.; and Berry, W., L. Plant and Soil, 294(1-2): 5-18. 2007.
link   bibtex   abstract  
Field Validation of the Phenomenon of Nitrification Inhibition by Brachiaria humidicola and Other Tropical Grasses. Subbarao, G., V.; Rondon, M.; Rao, I., M.; Ishikawa, T.; Ito, O.; Hurtado, M., P.; E. Amezquita; Barrtos, E.; and Lascano, C. JIRCAS Working Report, 51: 107-112. 2007.
link   bibtex   abstract  
  2006 (2)
A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Subbarao, G., V.; Ishikawa, T.; Ito, O.; Nakahara, K.; Wang, H., Y.; and Berry, W., L. Plant and Soil, 288(1-2): 101-112. 10 2006.
A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola [link]Website   doi   link   bibtex  
Scope and Strategies for Regulation of Nitrification in Agricultural Systems-Challenges and Opportunities. Subbarao, G., V.; Ito, O.; K L Sahrawat; Berry, W., L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; and Rao, I., M. Critical Reviews in Plant Sciences, 25(4): 303-335. 2006.
link   bibtex   abstract  
  2004 (2)
Production of wheat–Leymus racemosus chromosome addition lines. Kishii, M.; Yamada, T.; Sasakuma, T.; and Tsujimoto, H. Theoretical and Applied Genetics, 109(2): 255-260. 2004.
Production of wheat–Leymus racemosus chromosome addition lines [link]Website   doi   link   bibtex   abstract  
Grass populations control nitrification in savanna soils. Lata, J.; DEGRANGE, V.; RAYNAUD, X.; MARON, P.; LENSI, R.; and ABBADIE, L. Functional Ecology, 18(4): 605-611. 2004.
link   bibtex   abstract  
  2003 (2)
Suppression of nitrification and nitrous oxide emission by the tropical grass Brachiaria humidicola. Ishikawa, T.; Subbarao, G., V.; Ito, O.; and Okada, K. Volume 255 . Roots: The Dynamic Interface between Plants and the Earth, pages 413-419. Springer Netherlands, 2003.
Roots: The Dynamic Interface between Plants and the Earth [link]Website   doi   link   bibtex   abstract  
Cereal/legume rotation effects on rhizosphere bacterial community structure in west african soils. Alvey, S.; Yang, C., H.; Buerkert, A.; and Crowley, D., E. Biology and Fertility of Soils, 37(2): 73-82. 2003.
Cereal/legume rotation effects on rhizosphere bacterial community structure in west african soils [link]Website   doi   link   bibtex   abstract  
  2000 (3)
Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Bending, G., D.; and Lincoln, S., D. Soil Biology and Biochemistry, 32(8–9): 1261-1269. 2000.
Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products [link]Website   doi   link   bibtex   abstract  
Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale: an inhibition-stimulation balance hypothesis. Lata, J.; Guillaume, K.; Degrange, V.; Abbadie, L.; and Lensi, R. Proceedings of the Royal Society B: Biological Sciences, 267(1443): 595-600. 3 2000.
Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale: an inhibition-stimulation balance hypothesis [link]Website   doi   link   bibtex   abstract  
Phylogenetic analysis of rhizosphere-associated β -subclass proteobacterial ammonia oxidizers in a municipal wastewater treatment plant based on rhizoremediation technology. Abd El Haleem, D.; von Wintzingerode, F.; Moter, A.; Moawad, H.; and Göbel, U. Letters in Applied Microbiology, 31(1): 34-38. 7 2000.
Phylogenetic analysis of rhizosphere-associated β -subclass proteobacterial ammonia oxidizers in a municipal wastewater treatment plant based on rhizoremediation technology [link]Website   doi   link   bibtex   abstract  
  1999 (1)
熱帯イネ科牧草による硝化抑制作用の可能性 ーBrachiaria humidicola によるアンモニア酸化細菌の増殖抑制と亜酸化窒素の発生抑制効果ー. Ishikawa, T.; and 隆之・渡辺武・陽捷行, 石. 日本土壌肥料学雑誌, 70(6): 762-768. 1999.
link   bibtex   abstract  
  1994 (3)
土壌における薬剤の硝化抑制力の検定法. 坂井弘 土壌養分分析法, pages 166-169. 土壌養分分析法委員会編, editor(s). 養賢堂, 1994.
link   bibtex  
Occurrence of fusicoccanes in plants and fungi. Muromtsev, G., S.; Voblikova, V., D.; Kobrina, N., S.; Koreneva, V., M.; Krasnopolskaya, L., M.; and Sadovskaya, V., L. Journal of Plant Growth Regulation, 13(1): 39-49. 1994.
link   bibtex   abstract  
硝酸化成菌数の代替としての6時間硝化量. 坂井弘 土壌養分分析法, pages 165-166. 土壌養分分析法委員会編, editor(s). 養賢堂, 1994.
link   bibtex  
  1991 (1)
Variation in mineral nitrogen under grazed grassland swards. Jarvis, S., C.; and Barraclough, D. Plant and Soil, 138(2): 177-188. 12 1991.
Variation in mineral nitrogen under grazed grassland swards [link]Website   doi   link   bibtex   abstract  
  1988 (1)
Inhibition of nitrate accumulation in tropical grassland soils: effect of nitrogen fertilization and soil disturbance. SYLVESTER-BRADLEY, R.; MOSQUERA, D.; and MÉNDEZ, J., E. Journal of Soil Science, 39(3): 407-416. 9 1988.
Inhibition of nitrate accumulation in tropical grassland soils: effect of nitrogen fertilization and soil disturbance [link]Website   doi   link   bibtex   abstract  
  1986 (1)
Allelopathic suppression of weed and nitrification by selected cultivars ofSorghum bicolor (L.) moench. Alsaadawi, I.; Al-Uqaili, J.; Alrubeaa, A.; and Al-Hadithy, S. Journal of Chemical Ecology, 12(1): 209-219. 1986.
Allelopathic suppression of weed and nitrification by selected cultivars ofSorghum bicolor (L.) moench [link]Website   doi   link   bibtex  
  1969 (1)
Inhibition of nitrifying bacteria by grass and forb root extracts. Neal, J., L., J. Can. J. Microbiol., 15(6): 633-635. 1969.
link   bibtex   abstract  
  1966 (2)
Inhibition of Nitrifiers by Grass Root Extracts. Munro, P., E. Journal of Applied Ecology, 3(2): 231-238. 1966.
Inhibition of Nitrifiers by Grass Root Extracts [link]Website   link   bibtex   abstract  
Inhibition of Nitrite-Oxidizers by Roots of Grass. Munro, P., E. Journal of Applied Ecology, 3(2): 227-229. 1966.
Inhibition of Nitrite-Oxidizers by Roots of Grass [link]Website   link   bibtex  
  1965 (2)
Inhibition of Nitrogen-Fixing and Nitrifying Bacteria by Seed Plants II Characterization and Identification of Inhibitors. Rice, E., L. Physiologia Plantarum, 18(1): 255-268. 1965.
Inhibition of Nitrogen-Fixing and Nitrifying Bacteria by Seed Plants II Characterization and Identification of Inhibitors [link]Website   doi   link   bibtex  
Inhibition of Nitrogen-Fixing and Nitrifying Bacteria by Seed Plants III. Comparison of Three Species of Euphorbia. Rice, E., L. Proc. Oklahoma Acad. Sci., 45: 43-44. 1965.
link   bibtex  
  1964 (2)
土壌の硝化作用に関する研究(第12報)硝化抑制剤の土壌施用後の有効期間の検定について. 坂井弘 中国農業試験場報告, A-10: 85-92. 1964.
link   bibtex  
Inhibition of Nitrogen-Fixing and Nitrifying Bacteria by Seed Plants (I.). Rice, E., L. Ecology, 45(4): 824-837. 1964.
Inhibition of Nitrogen-Fixing and Nitrifying Bacteria by Seed Plants (I.) [link]Website   link   bibtex   abstract  
  1963 (1)
土壌の硝化作用に関する研究(第11報)土壌における薬剤の硝化抑制力の新検定法. 坂井弘 中国農業試験場報告, A-9: 177-195. 1963.
link   bibtex  
  1960 (7)
土壌の硝化作用に関する研究(第4報) : 十勝火山灰地の未墾地土壌の硝化作用. 坂井弘 日本土壌肥料学雑誌, 31(4): 149-151. 1960.
link   bibtex  
土壌の硝化作用に関する研究(第10報)火山灰土壌における硝安の硝酸化成. 坂井弘; and 竹内豊 北海道農業試驗場彙報, 76: 46-51. 1960.
link   bibtex  
土壌の硝化作用に関する研究(第5報) : 十勝火山灰乾燥統未墾地土壌の硝化作用の不良な原因. 坂井弘 日本土壌肥料学雑誌, 31(5): 207-210. 1960.
link   bibtex  
土壌の硝化作用に関する研究(第8報) 硝酸菌の季節変化とその要因. 坂井弘 日本土壌肥料学雑誌, 31(8): 331-333. 1960.
link   bibtex  
土壌の硝化作用に関する研究(第6報) : 土壌処理に伴う大正未墾地土壌における硝化菌の消長. 坂井弘 日本土壌肥料学雑誌, 31(6): 253-255. 1960.
link   bibtex  
土壌の硝化作用に関する研究(第9報)硝酸菌と硝酸還元菌との相互作用. 坂井弘; and 竹内豊 北海道農業試驗場彙報, 75: 60-67. 1960.
link   bibtex  
土壌の硝化作用に関する研究(第7報) : 土壌の硝酸菌数に及ぼす要因. 坂井弘 日本土壌肥料学雑誌, 31(7): 281-284. 1960.
link   bibtex  
  1959 (3)
土壌の硝化作用に関する研究 1.堆厩肥連用による土壌の理化学生改良の効果. 坂井弘; 吉田冨男; 船山達郎; and 吉田加代子 北海道農業試驗場彙報, 74: 42-49. 1959.
link   bibtex  
土壌の硝化作用に関する研究(第2報):新しい培養法について. 坂井弘 日本土壌肥料学雑誌, 30(2): 53-56. 1959.
link   bibtex  
土壌の硝化作用に関する研究(第3報) : 十勝火山灰土壌の硝化作用について. 坂井弘 日本土壌肥料学雑誌, 30(4): 149-153. 1959.
土壌の硝化作用に関する研究(第3報) : 十勝火山灰土壌の硝化作用について [link]Website   link   bibtex  
  1956 (1)
土壌の亜硝酸集積条件に関する研究. 坂井弘 北海道農業試驗場彙報, 71: 21-31. 1956.
link   bibtex  
  undefined (2)
No Title. Subbarao, G., V. . .
link   bibtex  
Submission Files Included in this PDF Subject : “ Nitrate reductase activity in leaves as a proxy for in vivo performance of biological nitrification inhibition by Brachiaria humidicola ” by Karwat et al . Dear Editor , Please find attached our manuscript. Article, T. . .
doi   link   bibtex