generated by bibbase.org
  2023 (5)
Artificial Intelligence Predictions Effect of Loading Rate, Crack Width and Crack Length Ratio on Mode I Fracture Toughness of PMMA. Wiangkham, A.; Aengchuan, P.; and Ariyarit, A. Engineering Innovations, 4: 15–20. 2023.
link   bibtex  
Effects of Alcohol-Blended Waste Plastic Oil on Engine Performance Characteristics and Emissions of a Diesel Engine. Kaewbuddee, C.; Maithomklang, S.; Aengchuan, P.; Wiangkham, A.; Klinkaew, N.; Ariyarit, A.; and Sukjit, E. Energies, 16(3): 1281. 2023.
link   bibtex  
Utilisation of low-reactivity fly ash for fabricating geopolymer materials. Poowancum, A.; and Aengchuan, P. Advances in Cement Research, 35(4): 144–151. 2023.
link   bibtex  
Experimental and optimization study on the effects of diethyl ether addition to waste plastic oil on diesel engine characteristics. Wiangkham, A.; Klinkaew, N.; Aengchuan, P.; Liplap, P.; Ariyarit, A.; and Sukjit, E. RSC advances, 13(36): 25464–25482. 2023.
link   bibtex  
Multi-fidelity model using GRNN and ANFIS algorithms-based fracture criterion for predicting mixed-mode I-II of sugarcane leaves/epoxy composite. Wiangkham, A.; Ariyarit, A.; Timtong, A.; and Aengchuan, P. Theoretical and Applied Fracture Mechanics, 125: 103892. 2023.
link   bibtex  
  2022 (5)
The Study Influence of Sugarcane Leaves Fibers Ratio on Compressive Strength of Fire Clay Bricks. Poophanchit, A.; and Aengchuan, P. In Materials Science Forum, volume 1053, pages 383–388, 2022. Trans Tech Publ
link   bibtex  
Prediction of the influence of castor oil–ethanol–diesel​ blends on single-cylinder diesel engine characteristics using generalized regression neural networks (GRNNs). Aengchuan, P.; Wiangkham, A.; Klinkaew, N.; Theinnoi, K.; and Sukjit, E. Energy Reports, 8: 38–47. 2022.
link   bibtex  
Structural evaluation of ZnO substitution for CaO in glass ionomer cement synthesized by sol-gel method and their properties. Thongsri, O.; Srisuwan, S.; Thaitalay, P.; Dangwiriyakul, R.; Aengchuan, P.; Chanlek, N.; Kidkhunthod, P.; Talabnin, C.; Suksaweang, S.; and Rattanachan, S. T. Journal of Materials Science,1–18. 2022.
link   bibtex  
Improvement of Mixed-Mode I/II Fracture Toughness Modeling Prediction Performance by Using a Multi-Fidelity Surrogate Model Based on Fracture Criteria. Wiangkham, A.; Aengchuan, P.; Kasemsri, R.; Pichitkul, A.; Tantrairatn, S.; and Ariyarit, A. Materials, 15(23): 8580. 2022.
link   bibtex  
Prediction of the influence of loading rate and sugarcane leaves concentration on fracture toughness of sugarcane leaves and epoxy composite using artificial intelligence. Wiangkham, A.; Ariyarit, A.; and Aengchuan, P. Theoretical and Applied Fracture Mechanics, 117: 103188. 2022.
link   bibtex  
  2021 (3)
Influence of Al 2 O 3 and P 2 O 5 contents in sol-gel ionomer glass system on the structure and their cement properties. Thongsri, O.; Srisuwan, S.; Thaitalay, P.; Dangwiriyakul, R.; Aengchuan, P.; Chanlek, N.; Talabnin, C.; Suksaweang, S.; and Rattanachan, S. T. Journal of Sol-Gel Science and Technology, 98: 441–451. 2021.
link   bibtex  
Effects of surface roughness and alloying element on surface morphology and tribology of low-alloy steel after gas-nitrocarburizing. Polyiam, N.; Aengchuan, P.; Taweejun, N.; and Poapongsakorn, P. Songklanakarin Journal of Science & Technology, 43(4). 2021.
link   bibtex  
Prediction of the mixed mode I/II fracture toughness of PMMA by an artificial intelligence approach. Wiangkham, A.; Ariyarit, A.; and Aengchuan, P. Theoretical and Applied Fracture Mechanics, 112: 102910. 2021.
link   bibtex  
  2020 (1)
Time-dependent fracture of epoxy resin under mixed-mode I/III loading. Poapongsakorn, P.; Wiangkham, A.; Aengchuan, P.; Noraphaiphipaksa, N.; and Kanchanomai, C. Theoretical and Applied Fracture Mechanics, 106: 102445. 2020.
link   bibtex  
  2019 (2)
Design of experiment of geopolymer from metakaolin blended with fly ash. Siriphongphanh, V.; Aengchuan, P.; and Poowancum, A. Suranaree J. Sci. Technol, 26(3): 278–283. 2019.
link   bibtex  
FAHP in Multi-Criteria Inventory Classification for Storage Layout. Nitkratoke, S.; and Aengchuan, P. In International Conference on Advanced Research in Applied Science and Engineering, 2019.
link   bibtex  
  2018 (1)
Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ ANN) and FIS with adaptive neuro-fuzzy inference system (FIS+ ANFIS) for inventory control. Aengchuan, P.; and Phruksaphanrat, B. Journal of Intelligent Manufacturing, 29: 905–923. 2018.
link   bibtex  
  2017 (1)
A comparative study of design of experiments and fuzzy inference system for plaster process control. Aengchuan, P; and Phruksaphanrat, B In Proceedings of the World Congress on Engineering, volume 1, 2017.
link   bibtex  
  2013 (1)
Inventory system design by fuzzy logic control: A case study. Aengchuan, P.; and Phruksaphanrat, B. Advanced materials research, 811: 619–624. 2013.
link   bibtex  
  undefined (2)
The Multi-Objective Optimization of Material Properties of 3d Print Onyx/Carbon Fiber Composites Via Surrogate Model. Petcharat, N.; Wiangkham, A.; Pichitkul, A.; Tantrairatn, S.; Bureerat, S.; Aengchuan, P.; Banpap, S.; Khunthongplatprasert, P.; and Ariyarit, A. Carbon Fiber Composites Via Surrogate Model. .
link   bibtex  
Comparative Study of Fuzzy Inference System and Design of Experiment for Clean Room Equipment Factory. Aengchuan, P.; and Aungkulanon, P. . .
link   bibtex