generated by bibbase.org
  2023 (1)
A mathematical model of the within-host kinetics of SARS-CoV-2 neutralizing antibodies following COVID-19 vaccination. dePillis , L.; Caffrey, R.; Chen, G.; Dela, M. D.; Eldevik, L.; McConnell, J.; Shabahang, S.; and Varvel, S. A. Journal of Theoretical Biology, 556: 111280. 2023.
link   bibtex  
  2022 (2)
A combination therapy of oncolytic viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept. Mahasa, K. J.; Ouifki, R.; Eladdadi, A.; and de Pillis, L. Mathematical Biosciences and Engineering, 19(5): 4429–4457. 2022.
link   bibtex  
Multi-method global sensitivity analysis of mathematical models. Dela, A.; Shtylla, B.; and de Pillis, L. Journal of Theoretical Biology, 546: 111159. 2022.
link   bibtex  
  2021 (1)
Natural killer cells recruitment in oncolytic virotherapy: a mathematical model. Senekal, N. S.; Mahasa, K. J.; Eladdadi, A.; de Pillis, L.; and Ouifki, R. Bulletin of Mathematical Biology, 83(7): 1–51. 2021.
link   bibtex  
  2020 (3)
Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Mahasa, K. J.; De Pillis, L.; Ouifki, R.; Eladdadi, A.; Maini, P.; Yoon, A; and Yun, C. Scientific reports, 10(1): 1–13. 2020.
link   bibtex  
Mathematical Modeling for Systemically Administered Oncolytic Adenovirus Loaded with Mesenchymal Stem Cells. Kim, I.; Mahasa, K. J; de Pillis, L.; Ouifki, R.; Eladdadi, A.; Maini, P.; Yoon, A; and Yun, C. MOLECULAR THERAPY, 28(4): 155–155. 2020.
link   bibtex  
Linear algebra with applications, 10th Edition. Leon, S. J; and De Pillis, L. 2020.
link   bibtex  
  2019 (1)
A mathematical model for DC vaccine treatment of type I diabetes. Shtylla, B.; Gee, M.; Do, A.; Shabahang, S.; Eldevik, L.; and de Pillis, L. Frontiers in physiology, 10: 1107. 2019.
link   bibtex  
  2018 (2)
Modelling acute myeloid leukaemia in a continuum of differentiation states. Cho, H.; Ayers, K.; DePills, L; Kuo, Y.; Park, J.; Radunskaya, A.; and Rockne, R Letters in biomathematics, 5(Suppl 1): S69. 2018.
link   bibtex  
Modelling tumour–immune dynamics, disease progression and treatment. Eladdadi, A.; de Pillis, L.; and Kim, P. Letters in Biomathematics, 5(2): S1–S5. 2018.
link   bibtex  
  2017 (2)
Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach. Mahasa, K. J.; Eladdadi, A.; De Pillis, L.; and Ouifki, R. Plos one, 12(9): e0184347. 2017.
link   bibtex  
Mathematical Medicine: Modeling Disease and Treatment. dePillis , L.; and others . 2017.
link   bibtex  
  2016 (2)
Mathematical model of tumor–immune surveillance. Mahasa, K. J.; Ouifki, R.; Eladdadi, A.; and de Pillis, L. Journal of theoretical biology, 404: 312–330. 2016.
link   bibtex  
Mathematical Model of Tumor-Immune Surveillance. Ouifki, K. J. M. R.; Eladdadi, A.; and de Pillis, L. . 2016.
link   bibtex  
  2015 (1)
Injury-initiated clot formation under flow: a mathematical model with warfarin treatment. dePillis , L.; Graham, E. J; Hood, K.; Ma, Y.; Radunskaya, A.; and Simons, J. In Applications of Dynamical Systems in Biology and Medicine, pages 75–98. Springer, New York, NY, 2015.
link   bibtex  
  2014 (6)
A comparison and catalog of intrinsic tumor growth models. Sarapata, E. A; and De Pillis, L. Bulletin of mathematical biology, 76(8): 2010–2024. 2014.
link   bibtex  
Modeling Immune-Mediated Tumor Growth and Treatment. Pillis, L. d.; and Radunskaya, A. In Mathematical Oncology 2013, pages 199–235. Birkhäuser, New York, NY, 2014.
link   bibtex  
Modeling tumor–immune dynamics. Pillis, L. G d.; and Radunskaya, A. E In Mathematical Models of Tumor-Immune System Dynamics, pages 59–108. Springer, New York, NY, 2014.
link   bibtex  
A Letter from the Guest Editors. Adler, F.; Allman, E. S; and de Pillis, L. G The American Mathematical Monthly, 121(9): 751–753. 2014.
link   bibtex  
Special Issue in Mathematical Biology. Adler, F.; Allman, E. S; and de Pillis, L. G 2014.
link   bibtex  
Modeling cancer-immune responses to therapy. Depillis, L.; Eladdadi, A; and Radunskaya, A. Journal of pharmacokinetics and pharmacodynamics, 41(5): 461–478. 2014.
link   bibtex  
  2013 (5)
Mathematical modeling of the regulatory T cell effects on renal cell carcinoma treatment. de Pillis, L. G; and others . 2013.
link   bibtex  
B cell chronic lymphocytic leukemia-a model with immune response. Nanda, S.; dePillis , L.; and Radunskaya, A. Discrete & Continuous Dynamical Systems-B, 18(4): 1053. 2013.
link   bibtex  
A model of dendritic cell therapy for melanoma. Radunskaya, A.; de Pillis, L; and Gallegos, A Frontiers in oncology, 3(56): 23516248. 2013.
link   bibtex  
Mathematical model of colorectal cancer with monoclonal antibody treatments. DePillis, L.; Savage, H; and Radunskaya, A. arXiv preprint arXiv:1312.3023. 2013.
link   bibtex  
A model of dendritic cell therapy for melanoma. DePillis, L.; Gallegos, A.; and Radunskaya, A. Frontiers in oncology, 3: 56. 2013.
link   bibtex  
  2012 (1)
Best practices in mathematical modeling. Pillis, L. G d.; and Radunskaya, A. E In Computational Toxicology, pages 51–74. Humana Press, Totowa, NJ, 2012.
link   bibtex  
  2010 (5)
Toward integration: from quantitative biology to mathbio-biomath?. Marsteller, P.; de Pillis, L.; Findley, A.; Joplin, K.; Pelesko, J.; Nelson, K.; Thompson, K.; Usher, D.; and Watkins, J. CBE—Life Sciences Education, 9(3): 165–171. 2010.
link   bibtex  
Team research at the biology–mathematics interface: project management perspectives. Milton, J. G; Radunskaya, A. E; Lee, A. H; de Pillis, L. G; and Bartlett, D. F CBE—Life Sciences Education, 9(3): 316–322. 2010.
link   bibtex  
Mathematical biology at an undergraduate liberal arts college. de Pillis, L.; and Adolph, S. C CBE—Life Sciences Education, 9(4): 417–421. 2010.
link   bibtex  
Team Research at the Biology–Mathematics Interface: Project Management Perspectives. Radunskaya, A. E; Milton, J. G; Lee, A. H; de Pillis, L. G; and Bartlett, D. F . 2010.
link   bibtex  
Effective collaborations to support transformative research. Ryan, J. G; and DePillis, L. Transformative Research at Predominately Undergraduate Institutions,89. 2010.
link   bibtex  
  2009 (2)
Mathematical model creation for cancer chemo-immunotherapy. de Pillis, L.; Renee Fister, K; Gu, W.; Collins, C.; Daub, M.; Gross, D.; Moore, J.; and Preskill, B. Computational and Mathematical Methods in Medicine, 10(3): 165–184. 2009.
link   bibtex  
A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity. Lin Erickson, A. H; Wise, A.; Fleming, S.; Baird, M.; Lateef, Z.; Molinaro, A.; Teboh-Ewungkem, M.; and de Pillis, L. G . 2009.
link   bibtex  
  2008 (2)
Are engineering schools masculine and authoritarian? The mission statements say yes. De Pillis, E.; and De Pillis, L. Journal of Diversity in Higher Education, 1(1): 33. 2008.
link   bibtex  
Optimal control of mixed immunotherapy and chemotherapy of tumors. de Pillis, L. G; Fister, K R.; Gu, W.; Head, T.; Maples, K.; Neal, T.; Murugan, A.; and Kozai, K. Journal of Biological systems, 16(01): 51–80. 2008.
link   bibtex  
  2007 (3)
Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls. de Pillis, L. G; Gu, W.; Fister, K R.; Head, T.; Maples, K; Murugan, A; Neal, T; and Yoshida, K Mathematical Biosciences, 209(1): 292–315. 2007.
link   bibtex  
Seeking bang-bang solutions of mixed immuno-chemotherapy of tumors. Pillis, L. G d.; Fister, K R.; Gu, W.; Collins, C.; Daub, M.; Gross, D.; Moore, J.; and Preskill, B. Electronic Journal of Differential Equations (EJDE)[electronic only], 2007: Paper–No. 2007.
link   bibtex  
Teaching Time Savers: Is Homework Grading on Your Nerves?. de Pillis, L. G; and Orrison Jr, M. E . 2007.
link   bibtex  
  2006 (5)
A cellular automata model of tumor–immune system interactions. Mallet, D. G; and De Pillis, L. G Journal of theoretical biology, 239(3): 334–350. 2006.
link   bibtex  
Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. de Pillis, L. G; Gu, W.; and Radunskaya, A. E Journal of theoretical biology, 238(4): 841–862. 2006.
link   bibtex  
Spatial tumor-immune modeling. de Pillis, L. G; Mallet, D. G; and Radunskaya, A. E Computational and Mathematical Methods in medicine, 7(2-3): 159–176. 2006.
link   bibtex  
Some promising approaches to tumor-immune modeling. de Pillis, L. G; and Radunskaya, A. E Contemporary Mathematics, 410: 89. 2006.
link   bibtex  
Modeling Vascular Tumor Growth. Cecka, C.; Davidson, A.; Head, T.; Mohamed, D.; Robinson, L.; and dePillis , L. 2006.
link   bibtex  
  2005 (2)
A validated mathematical model of cell-mediated immune response to tumor growth. de Pillis, L. G; Radunskaya, A. E; and Wiseman, C. L Cancer research, 65(17): 7950–7958. 2005.
link   bibtex  
Determinants and polynomial root structure. De Pillis, L. G International Journal of Mathematical Education in Science and Technology, 36(5): 469–481. 2005.
link   bibtex  
  2004 (2)
Exercises for Tumor Dynamics Module. De Pillis, L.; and Radunskaya, A. . 2004.
link   bibtex  
Introduction to Fourier Transforms, Fourier Series and the FFT Exercises and Projects. de Pillis, L.; and Radunskaya, A. . 2004.
link   bibtex  
  2003 (3)
The dynamics of an optimally controlled tumor model: A case study. De Pillis, L. G; and Radunskaya, A. Mathematical and computer modelling, 37(11): 1221–1244. 2003.
link   bibtex  
A mathematical model of immune response to tumor invasion. de Pillis, L. G; and Radunskaya, A. In Computational fluid and solid mechanics 2003, pages 1661–1668. Elsevier Science Ltd, 2003.
link   bibtex  
An Introduction to Fourier Transforms, Fourier Series and the FFT. de Pillis, L.; and Radunskaya, A. Power, 1(2): 1–5. 2003.
link   bibtex  
  2002 (8)
A brief background on the immune system. Buchla, E; De Pillis, L.; and Radunskaya, A. Curr Opin Immunol, 143: 249–259. 2002.
link   bibtex  
Non-dimensionalization of Tumor-Immune ODE System. De Pillis, L.; and Radunskaya, A. . 2002.
link   bibtex  
Equation Development of Tumor-Immune ODE System. de Pillis, L.; and Radunskaya, A. . 2002.
link   bibtex  
Bifurcation Analysis of Tumor-Immune ODE System. de Pillis, L.; and Radunskaya, A. . 2002.
link   bibtex  
Qualitative analysis of tumor-immune ode system. de Pillis, L.; and Radunskaya, A. 2002.
link   bibtex  
Projects for Tumor Dynamics Module. De Pillis, L.; and Radunskaya, A. . 2002.
link   bibtex  
Matlab Scripts for Tumor Dynamics Module. de Pillis, L.; and Radunskaya, A. . 2002.
link   bibtex  
Overview of Tumor Dynamics Module. de Pillis, L.; and Radunskaya, A. . 2002.
link   bibtex  
  2001 (3)
A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. De Pillis, L. G; and Radunskaya, A. Computational and Mathematical Methods in Medicine, 3(2): 79–100. 2001.
link   bibtex  
Model updating by adding known masses. Cha, P. D; and de Pillis, L. G International Journal for Numerical Methods in Engineering, 50(11): 2547–2571. 2001.
link   bibtex  
The long-term impact of university budget cuts: A mathematical model. de Pillis, E. G; and De Pillis, L. G Mathematical and Computer Modelling, 33(8-9): 851–876. 2001.
link   bibtex  
  2000 (1)
Resistance and Drug Therapy: an Optimal Control Approach. de Pillis, L.; and Radunskaya, A . 2000.
link   bibtex  
  1999 (1)
Model Updating by Adding Known Masses and Stiffnesses. Cha, P. D; and de Pillis, L. G . 1999.
link   bibtex  
  1998 (4)
Transpose-free formulations of Lanczos-type methods for nonsymmetric linear systems. Chan, T. F; De Pillis, L.; and van der Vorst, H. Numerical Algorithms, 17(1): 51–66. 1998.
link   bibtex  
A comparison of iterative methods for solving nonsymmetric linear systems. de Pillis, L. G Acta Applicandae Mathematica, 51(2): 141–159. 1998.
link   bibtex  
The multiple-scale transport equation in one space dimension. de Pillis, L. G Annali di Matematica Pura ed Applicata, 174(1): 121–133. 1998.
link   bibtex  
Newton's Cubic Roots. de Pillis, L. G . 1998.
link   bibtex  
  1997 (1)
Numerical methods for analyzing the effects of uncertainties on the dynamics of periodic structures. Cha, P. D; and de Pillis, L. G International journal for numerical methods in engineering, 40(20): 3749–3765. 1997.
link   bibtex  
  1991 (1)
A transpose-free squared Lanczos algorithm and application to solving nonsymmetric linear systems. Chan, T. F; De Pillis, L. G; and van der Vorst, H. A 1991.
link   bibtex  
  undefined (4)
COMPUTATIONAL MODEL OF HIV-1 ESCAPE FROM THE CYTOTOXIC T LYMPHOCYTE. SCHWARTZ, E. J; YANG, O. O; CUMBERLAND, W. G; and DE PILLIS, L. G . .
link   bibtex  
Supplemental material for injury-initiated clot formation under flow: a mathematical model with warfarin treatment. de Pillis, L; Graham, E.; Hood, K; Ma, Y; Radunskaya, A; and Simons, J . .
link   bibtex  
WhAM! A Research Collaboration Workshop for Women in Applied Mathematics: Dynamical Systems with Applications to Biology and Medicine. Jackson, T.; Radunskaya, A.; Gevertz, J.; Rejniak, K.; Fauci, L.; Leiderman, K.; Arciero, J.; Layton, A.; de Pillis, L.; Graham, E.; and others . .
link   bibtex  
Mathematical Medicine: Modeling Disease and Treatment Key words: Immune dynamics; Cancer; Diabetes; Ordinary differential equations. de Pillis, L. . .
link   bibtex