generated by bibbase.org
  2024 (19)
Promises and pitfalls of artificial intelligence for legal applications. Kapoor, S.; Henderson, P.; and Narayanan, A. January 2024. arXiv:2402.01656 [cs]
Promises and pitfalls of artificial intelligence for legal applications [link]Paper   doi   link   bibtex   abstract   6 downloads  
Towards Supporting Legal Argumentation with NLP: Is More Data Really All You Need?. Santosh, T. Y. S. S.; Ashley, K. D.; Atkinson, K.; and Grabmair, M. June 2024. arXiv:2406.10974 [cs]
Towards Supporting Legal Argumentation with NLP: Is More Data Really All You Need? [link]Paper   doi   link   bibtex   abstract   3 downloads  
Towards Explainability in Legal Outcome Prediction Models. Valvoda, J.; and Cotterell, R. April 2024. arXiv:2403.16852 [cs]
Towards Explainability in Legal Outcome Prediction Models [link]Paper   doi   link   bibtex   abstract   4 downloads  
Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools. Magesh, V.; Surani, F.; Dahl, M.; Suzgun, M.; Manning, C. D.; and Ho, D. E. May 2024. arXiv:2405.20362 [cs]
Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools [link]Paper   doi   link   bibtex   abstract   2 downloads  
Generative Discrimination: What Happens When Generative AI Exhibits Bias, and What Can Be Done About It. Hacker, P.; Mittelstadt, B.; Borgesius, F. Z.; and Wachter, S. June 2024. arXiv:2407.10329 [cs]
Generative Discrimination: What Happens When Generative AI Exhibits Bias, and What Can Be Done About It [link]Paper   doi   link   bibtex   abstract   2 downloads  
Artificial Intelligence (AI) in Legal Data Mining. Deroy, A.; Bailung, N. K.; Ghosh, K.; Ghosh, S.; and Chakraborty, A. May 2024. arXiv:2405.14707 [cs]
Artificial Intelligence (AI) in Legal Data Mining [link]Paper   doi   link   bibtex   abstract  
A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law. Chen, Z. Z.; Ma, J.; Zhang, X.; Hao, N.; Yan, A.; Nourbakhsh, A.; Yang, X.; McAuley, J.; Petzold, L.; and Wang, W. Y. May 2024. arXiv:2405.01769 [cs]
A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [link]Paper   doi   link   bibtex   abstract  
Large Language Models for Judicial Entity Extraction: A Comparative Study. Hussain, A. S.; and Thomas, A. July 2024. arXiv:2407.05786 [cs]
Large Language Models for Judicial Entity Extraction: A Comparative Study [link]Paper   doi   link   bibtex   abstract   1 download  
Human Centered AI for Indian Legal Text Analytics. Ghosh, S.; Verma, D.; Ganesan, B.; Bindal, P.; Kumar, V.; and Bhatnagar, V. March 2024. arXiv:2403.10944 [cs]
Human Centered AI for Indian Legal Text Analytics [link]Paper   doi   link   bibtex   abstract   1 download  
Evaluation Ethics of LLMs in Legal Domain. Zhang, R.; Li, H.; Wu, Y.; Ai, Q.; Liu, Y.; Zhang, M.; and Ma, S. March 2024. arXiv:2403.11152 [cs]
Evaluation Ethics of LLMs in Legal Domain [link]Paper   doi   link   bibtex   abstract   2 downloads  
Applicability of Large Language Models and Generative Models for Legal Case Judgement Summarization. Deroy, A.; Ghosh, K.; and Ghosh, S. July 2024. arXiv:2407.12848 [cs]
Applicability of Large Language Models and Generative Models for Legal Case Judgement Summarization [link]Paper   doi   link   bibtex   abstract  
Can AI Standards Have Politics?. Solow-Niederman, A. February 2024.
Can AI Standards Have Politics? [link]Paper   link   bibtex   abstract  
Better Call GPT, Comparing Large Language Models Against Lawyers. Martin, L.; Whitehouse, N.; Yiu, S.; Catterson, L.; and Perera, R. January 2024. arXiv:2401.16212 [cs]
Better Call GPT, Comparing Large Language Models Against Lawyers [link]Paper   doi   link   bibtex   abstract  
A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models. Tonmoy, S. M. T. I.; Zaman, S. M. M.; Jain, V.; Rani, A.; Rawte, V.; Chadha, A.; and Das, A. January 2024. arXiv:2401.01313 [cs]
A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models [link]Paper   link   bibtex   abstract  
Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model. Cui, J.; Ning, M.; Li, Z.; Chen, B.; Yan, Y.; Li, H.; Ling, B.; Tian, Y.; and Yuan, L. May 2024. arXiv:2306.16092 [cs]
Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model [link]Paper   doi   link   bibtex   abstract  
Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models. Dahl, M.; Magesh, V.; Suzgun, M.; and Ho, D. E. Journal of Legal Analysis, 16(1): 64–93. January 2024. arXiv:2401.01301 [cs]
Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models [link]Paper   doi   link   bibtex   abstract  
Rethinking Interpretability in the Era of Large Language Models. Singh, C.; Inala, J. P.; Galley, M.; Caruana, R.; and Gao, J. January 2024. arXiv:2402.01761 [cs]
Rethinking Interpretability in the Era of Large Language Models [link]Paper   doi   link   bibtex   abstract  
Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model. Cui, J.; Ning, M.; Li, Z.; Chen, B.; Yan, Y.; Li, H.; Ling, B.; Tian, Y.; and Yuan, L. May 2024. arXiv:2306.16092 [cs]
Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model [link]Paper   doi   link   bibtex   abstract  
Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models. Dahl, M.; Magesh, V.; Suzgun, M.; and Ho, D. E. Journal of Legal Analysis, 16(1): 64–93. January 2024. arXiv:2401.01301 [cs]
Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models [link]Paper   doi   link   bibtex   abstract  
  2023 (12)
Natural Language Processing in the Legal Domain. Katz, D. M.; Hartung, D.; Gerlach, L.; Jana, A.; and Bommarito II, M. J. February 2023. arXiv:2302.12039 [cs]
Natural Language Processing in the Legal Domain [link]Paper   link   bibtex   abstract  
LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development. Chalkidis, I.; Garneau, N.; Goanta, C.; Katz, D. M.; and Søgaard, A. May 2023. arXiv:2305.07507 [cs]
LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development [link]Paper   link   bibtex   abstract  
GPT-4 Passes the Bar Exam. Katz, D. M.; Bommarito, M. J.; Gao, S.; and Arredondo, P. March 2023.
GPT-4 Passes the Bar Exam [link]Paper   doi   link   bibtex   abstract  
ChatGPT may Pass the Bar Exam soon, but has a Long Way to Go for the LexGLUE benchmark. Chalkidis, I. March 2023. arXiv:2304.12202 [cs]
ChatGPT may Pass the Bar Exam soon, but has a Long Way to Go for the LexGLUE benchmark [link]Paper   doi   link   bibtex   abstract  
Super-SCOTUS: A multi-sourced dataset for the Supreme Court of the US. Fang, B.; Cohn, T.; Baldwin, T.; and Frermann, L. In Preo\textcommabelowtiuc-Pietro, D.; Goanta, C.; Chalkidis, I.; Barrett, L.; Spanakis, G.; and Aletras, N., editor(s), Proceedings of the Natural Legal Language Processing Workshop 2023, pages 202–214, Singapore, December 2023. Association for Computational Linguistics
Super-SCOTUS: A multi-sourced dataset for the Supreme Court of the US [link]Paper   doi   link   bibtex   abstract  
A Short Survey of Viewing Large Language Models in Legal Aspect. Sun, Z. March 2023. arXiv:2303.09136 [cs]
A Short Survey of Viewing Large Language Models in Legal Aspect [link]Paper   doi   link   bibtex   abstract  
Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models. Louis, A.; van Dijck, G.; and Spanakis, G. September 2023. arXiv:2309.17050 [cs]
Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models [link]Paper   doi   link   bibtex   abstract  
Red teaming ChatGPT via Jailbreaking: Bias, Robustness, Reliability and Toxicity. Zhuo, T. Y.; Huang, Y.; Chen, C.; and Xing, Z. May 2023. arXiv:2301.12867 [cs]
Red teaming ChatGPT via Jailbreaking: Bias, Robustness, Reliability and Toxicity [link]Paper   doi   link   bibtex   abstract  
How to Use Large Language Models for Empirical Legal Research. Choi, J. H. August 2023.
How to Use Large Language Models for Empirical Legal Research [link]Paper   link   bibtex   abstract  
ChatGPT by OpenAI: The End of Litigation Lawyers?. Iu, K. Y.; and Wong, V. M. January 2023.
ChatGPT by OpenAI: The End of Litigation Lawyers? [link]Paper   doi   link   bibtex   abstract  
Weaving Pathways for Justice with GPT: LLM-driven automated drafting of interactive legal applications. Steenhuis, Q.; Colarusso, D.; and Willey, B. December 2023. arXiv:2312.09198 [cs]
Weaving Pathways for Justice with GPT: LLM-driven automated drafting of interactive legal applications [link]Paper   doi   link   bibtex   abstract  
Language Models Get a Gender Makeover: Mitigating Gender Bias with Few-Shot Data Interventions. Thakur, H.; Jain, A.; Vaddamanu, P.; Liang, P. P.; and Morency, L. In Rogers, A.; Boyd-Graber, J.; and Okazaki, N., editor(s), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 340–351, Toronto, Canada, July 2023. Association for Computational Linguistics
Language Models Get a Gender Makeover: Mitigating Gender Bias with Few-Shot Data Interventions [link]Paper   doi   link   bibtex   abstract  
  2022 (9)
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. Chalkidis, I.; Jana, A.; Hartung, D.; Bommarito, M.; Androutsopoulos, I.; Katz, D. M.; and Aletras, N. November 2022. arXiv:2110.00976 [cs]
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English [link]Paper   link   bibtex   abstract  
GPT Takes the Bar Exam. Bommarito II, M.; and Katz, D. M. December 2022. arXiv:2212.14402 [cs]
GPT Takes the Bar Exam [link]Paper   link   bibtex   abstract  
EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain. Aumiller, D.; Chouhan, A.; and Gertz, M. October 2022. arXiv:2210.13448 [cs]
EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain [link]Paper   doi   link   bibtex   abstract  
A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and Challenges. Cui, J.; Shen, X.; Nie, F.; Wang, Z.; Wang, J.; and Chen, Y. April 2022. arXiv:2204.04859 [cs]
A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and Challenges [link]Paper   doi   link   bibtex   abstract  
State of the Art in Artificial Intelligence applied to the Legal Domain. Dias, J.; Santos, P. A.; Cordeiro, N.; Antunes, A.; Martins, B.; Baptista, J.; and Gonçalves, C. March 2022. arXiv:2204.07047 [cs]
State of the Art in Artificial Intelligence applied to the Legal Domain [link]Paper   doi   link   bibtex   abstract  
Legal Prompting: Teaching a Language Model to Think Like a Lawyer. Yu, F.; Quartey, L.; and Schilder, F. December 2022. arXiv:2212.01326 [cs]
Legal Prompting: Teaching a Language Model to Think Like a Lawyer [link]Paper   doi   link   bibtex   abstract  
To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation. Stahl, M.; Spliethöver, M.; and Wachsmuth, H. In Bamman, D.; Hovy, D.; Jurgens, D.; Keith, K.; O'Connor, B.; and Volkova, S., editor(s), Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS), pages 39–51, Abu Dhabi, UAE, November 2022. Association for Computational Linguistics
To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation [link]Paper   doi   link   bibtex   abstract  
A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and Challenges. Cui, J.; Shen, X.; Nie, F.; Wang, Z.; Wang, J.; and Chen, Y. April 2022. arXiv:2204.04859 [cs]
A Survey on Legal Judgment Prediction: Datasets, Metrics, Models and Challenges [link]Paper   doi   link   bibtex   abstract  
State of the Art in Artificial Intelligence applied to the Legal Domain. Dias, J.; Santos, P. A.; Cordeiro, N.; Antunes, A.; Martins, B.; Baptista, J.; and Gonçalves, C. March 2022. arXiv:2204.07047 [cs]
State of the Art in Artificial Intelligence applied to the Legal Domain [link]Paper   doi   link   bibtex   abstract  
  2021 (1)
Law Smells: Defining and Detecting Problematic Patterns in Legal Drafting. Coupette, C.; Hartung, D.; Beckedorf, J.; Böther, M.; and Katz, D. M. October 2021. arXiv:2110.11984 [cs]
Law Smells: Defining and Detecting Problematic Patterns in Legal Drafting [link]Paper   link   bibtex   abstract  
  2020 (2)
Artificial Intelligence in the Legal Field and the Indispensable Human Element Legal Ethics Demands. Yamane, N. In 2020.
Artificial Intelligence in the Legal Field and the Indispensable Human Element Legal Ethics Demands [link]Paper   link   bibtex   abstract  
AI in the Law: Towards Assessing Ethical Risks. Wright, S. A. In 2020 IEEE International Conference on Big Data (Big Data), pages 2160–2169, December 2020.
AI in the Law: Towards Assessing Ethical Risks [link]Paper   doi   link   bibtex   abstract  
  2019 (4)
Deep learning in law: early adaptation and legal word embeddings trained on large corpora. Chalkidis, I.; and Kampas, D. Artif. Intell. Law, 27(2): 171–198. June 2019.
Deep learning in law: early adaptation and legal word embeddings trained on large corpora [link]Paper   doi   link   bibtex   abstract  
Neural Legal Judgment Prediction in English. Chalkidis, I.; Androutsopoulos, I.; and Aletras, N. In Korhonen, A.; Traum, D.; and Màrquez, L., editor(s), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4317–4323, Florence, Italy, July 2019. Association for Computational Linguistics
Neural Legal Judgment Prediction in English [link]Paper   doi   link   bibtex   abstract  
Deep learning in law: early adaptation and legal word embeddings trained on large corpora. Chalkidis, I.; and Kampas, D. Artif. Intell. Law, 27(2): 171–198. June 2019.
Deep learning in law: early adaptation and legal word embeddings trained on large corpora [link]Paper   doi   link   bibtex   abstract  
Neural Legal Judgment Prediction in English. Chalkidis, I.; Androutsopoulos, I.; and Aletras, N. In Korhonen, A.; Traum, D.; and Màrquez, L., editor(s), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4317–4323, Florence, Italy, July 2019. Association for Computational Linguistics
Neural Legal Judgment Prediction in English [link]Paper   doi   link   bibtex   abstract  
  2018 (2)
OpenEDGAR: Open Source Software for SEC EDGAR Analysis. Bommarito, M. J.; Katz, D. M.; and Detterman, E. June 2018.
OpenEDGAR: Open Source Software for SEC EDGAR Analysis [link]Paper   doi   link   bibtex   abstract  
LexNLP: Natural language processing and information extraction for legal and regulatory texts. Bommarito II, M. J.; Katz, D. M.; and Detterman, E. M. June 2018. arXiv:1806.03688 [cs, stat]
LexNLP: Natural language processing and information extraction for legal and regulatory texts [link]Paper   link   bibtex   abstract  
  2017 (4)
Harnessing legal complexity. Ruhl, J. B.; Katz, D. M.; and Bommarito, M. J. Science, 355(6332): 1377–1378. March 2017.
Harnessing legal complexity [link]Paper   doi   link   bibtex   abstract  
Measuring and Modeling the U.S. Regulatory Ecosystem. Bommarito, M. J.; and Katz, D. M. June 2017.
Measuring and Modeling the U.S. Regulatory Ecosystem [link]Paper   doi   link   bibtex   abstract  
Crowdsourcing Accurately and Robustly Predicts Supreme Court Decisions. Katz, D. M.; Bommarito, M. J.; and Blackman, J. December 2017.
Crowdsourcing Accurately and Robustly Predicts Supreme Court Decisions [link]Paper   doi   link   bibtex   abstract  
Artificial Intelligence and Legal Ethics: Whether AI Lawyers Can Make Ethical Decisions. Nunez, C. Tulane Journal of Technology & Intellectual Property, 20. 2017.
Artificial Intelligence and Legal Ethics: Whether AI Lawyers Can Make Ethical Decisions [link]Paper   link   bibtex  
  2014 (1)
Predicting the Behavior of the Supreme Court of the United States: A General Approach. Katz, D. M.; Bommarito II, M. J.; and Blackman, J. July 2014. arXiv:1407.6333 [physics]
Predicting the Behavior of the Supreme Court of the United States: A General Approach [link]Paper   link   bibtex   abstract  
  2013 (1)
Measuring the Complexity of the Law: The United States Code. Katz, D. M.; and Bommarito, M. J. August 2013.
Measuring the Complexity of the Law: The United States Code [link]Paper   doi   link   bibtex   abstract  
  2012 (1)
Quantitative Legal Prediction – or – How I Learned to Stop Worrying and Start Preparing for the Data Driven Future of the Legal Services Industry. Katz, D. M. December 2012.
Quantitative Legal Prediction – or – How I Learned to Stop Worrying and Start Preparing for the Data Driven Future of the Legal Services Industry [link]Paper   link   bibtex   abstract  
  2010 (1)
A Mathematical Approach to the Study of the United States Code. Bommarito II, M. J.; and Katz, D. M. Physica A: Statistical Mechanics and its Applications, 389(19): 4195–4200. October 2010. arXiv:1003.4146 [physics]
A Mathematical Approach to the Study of the United States Code [link]Paper   doi   link   bibtex   abstract  
  2009 (2)
Reproduction of Hierarchy? A Social Network Analysis of the American Law Professoriate. Katz, D. M.; Gubler, J. R.; Zelner, J.; Bommarito, M. J.; Provins, E. A.; and Ingall, E. M. March 2009.
Reproduction of Hierarchy? A Social Network Analysis of the American Law Professoriate [link]Paper   link   bibtex   abstract  
Law as a Seamless Web? Comparison of Various Network Representations of the United States Supreme Court Corpus (1791-2005). Bommarito, M. J.; Katz, D. M.; and Zelner, J. June 2009.
Law as a Seamless Web? Comparison of Various Network Representations of the United States Supreme Court Corpus (1791-2005) [link]Paper   doi   link   bibtex   abstract