generated by bibbase.org
  2024 (6)
Associations of Longitudinal BMI-Percentile Classification Patterns in Early Childhood with Neighborhood-Level Social Determinants of Health. Gupta, M.; Phan, T. T.; Lê-Scherban, F.; Eckrich, D.; Bunnell, H. T.; and Beheshti, R. Childhood Obesity. 2024. PMID: 39187268
Associations of Longitudinal BMI-Percentile Classification Patterns in Early Childhood with Neighborhood-Level Social Determinants of Health [link]Paper   doi   link   bibtex   4 downloads  
Impact of COVID-19 Diagnosis on Weight Trajectories of Children in the US National COVID Cohort Collaborative (N3C) . Mottalib, M. M.; Phan, T. T.; Bramante, C. T; Chute, C. G.; A., P. L.; and Beheshti, R. Childhood Obesity. 2024. Article in press
link   bibtex  
Reliable prediction of childhood obesity using only routinely collected EHRs may be possible. Gupta, M.; Eckrich, D.; Bunnell, H. T.; Phan, T. T.; and Beheshti, R. Obesity Pillars, 12: 100128. 2024.
Reliable prediction of childhood obesity using only routinely collected EHRs may be possible [link]Paper   doi   link   bibtex  
Multimodal Sleep Apnea Detection with Missing or Noisy Modalities. Fayyaz, H.; D'Souza, N. S.; and Beheshti, R. In Machine Learning for Healthcare 2024, 2024. In press
Multimodal Sleep Apnea Detection with Missing or Noisy Modalities [link]Paper   link   bibtex   1 download  
HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks. Piya, F.; Gupta, M.; and Beheshti, R. In 2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pages 132-141, Los Alamitos, CA, USA, jun 2024. IEEE Computer Society
HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks [link]Paper   doi   link   bibtex  
Graph Transformers on EHRs: Better Representation Improves Downstream Performance. Poulain, R.; and Beheshti, R. In The Twelfth International Conference on Learning Representations (ICLR), 2024.
Graph Transformers on EHRs: Better Representation Improves Downstream Performance [link]Paper   link   bibtex  
  2023 (3)
Bringing At-home Pediatric Sleep Apnea Testing Closer to Reality: A Multi-modal Transformer Approach. Fayyaz, H.; Strang, A.; and Beheshti, R. In Proceedings of the 8th Machine Learning for Healthcare Conference, volume 219, of Proceedings of Machine Learning Research, pages 167–185, 11–12 Aug 2023. PMLR
Bringing At-home Pediatric Sleep Apnea Testing Closer to Reality: A Multi-modal Transformer Approach [link]Paper   link   bibtex  
Improving Fairness in AI Models on Electronic Health Records: The Case for Federated Learning Methods. Poulain, R.; Bin Tarek, M. F.; and Beheshti, R. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, of FAccT '23, pages 1599–1608, New York, NY, USA, 2023. Association for Computing Machinery
Improving Fairness in AI Models on Electronic Health Records: The Case for Federated Learning Methods [link]Paper   doi   link   bibtex  
Subtyping patients with chronic disease using longitudinal BMI patterns. Mottalib, M. M.; Jones-Smith, J. C; Sheridan, B.; and Beheshti, R. IEEE Journal of Biomedical and Health Informatics,1-12. 2023.
doi   link   bibtex   4 downloads  
  2022 (7)
Obesity Prediction with EHR Data: A Deep Learning Approach with Interpretable Elements. Gupta, M.; Phan, T. T; Bunnell, H T.; and Beheshti, R. ACM Transactions on Computing for Healthcare (HEALTH), 3(3): Article 32. 2022.
Obesity Prediction with EHR Data: A Deep Learning Approach with Interpretable Elements [link]Paper   doi   link   bibtex   7 downloads  
Predicting Acute Events using the Movement Patterns of Older Adults: An Unsupervised Clustering Method. Ramazi, R.; Bowen, M. E.; and Beheshti, R. Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2022, 1(22). 8 2022.
Predicting Acute Events using the Movement Patterns of Older Adults: An Unsupervised Clustering Method [link]Paper   doi   link   bibtex   4 downloads  
Predicting attrition patterns from pediatric weight management programs. Fayyaz, H.; Phan, T. T.; Bunnell, H. T.; and Beheshti, R. In Proceedings of the 2nd Machine Learning for Health symposium, volume 193, of Proceedings of Machine Learning Research, pages 326–342, 11 2022. PMLR
Predicting attrition patterns from pediatric weight management programs [link]Paper   link   bibtex  
An Extensive Data Processing Pipeline for MIMIC-IV. Gupta, M.; Gallamoza, B.; Cutrona, N.; Dhakal, P.; Poulain, R.; and Beheshti, R. In Proceedings of the 2nd Machine Learning for Health symposium, volume 193, of Proceedings of Machine Learning Research, pages 311–325, 11 2022. PMLR
An Extensive Data Processing Pipeline for MIMIC-IV [link]Paper   link   bibtex  
Developing Acute Event Risk Profiles for Older Adults With Dementia in Long-Term Care Using Motor Behavior Clusters Derived From Deep Learning. Ramazi, R.; Bowen, M. E.; Flynn, A. J; and Beheshti, R. Journal of the American Medical Directors Association. 2022.
doi   link   bibtex   2 downloads  
Few-Shot Learning with Semi-Supervised Transformers for Electronic Health Records. Poulain, R.; Gupta, M.; and Beheshti, R. In Proceedings of the Machine Learning for Healthcare (MLHC-2022), 2022.
link   bibtex  
Flexible-window Predictions on Electronic Health Records. Gupta, M.; Phan, T. T; Bunnell, H T.; and Beheshti, R. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 12510-12516, 2022. AAAI
Flexible-window Predictions on Electronic Health Records [link]Paper   doi   link   bibtex  
  2021 (4)
Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models. Guo, A.; Beheshti, R.; Khan, Y. M; Langabeer, J. R; and Foraker, R. E BMC Medical Informatics and Decision Making, 21(1): 1–10. 2021.
link   bibtex  
Predicting progression patterns of type 2 diabetes using multi-sensor measurements. Ramazi, R.; Perndorfer, C.; Soriano, E. C; Laurenceau, J.; and Beheshti, R. Smart Health, 21: 100206. 2021.
doi   link   bibtex   1 download  
Transformer-based Multi-target Regression on Electronic Health Records for Primordial Prevention of Cardiovascular Disease. Poulain, R.; Gupta, M.; Foraker, R.; and Beheshti, R. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 726–731, 2021.
doi   link   bibtex   1 download  
Concurrent imputation and prediction on EHR data using bi-directional GANs. Gupta, M.; Phan, T. T; Bunnell, H T.; and Beheshti, R. In Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pages Article 7, Gainesville, Florida, 2021. Association for Computing Machinery
Concurrent imputation and prediction on EHR data using bi-directional GANs [link]Paper   doi   link   bibtex   1 download  
  2019 (2)
Multi-Modal Predictive Models of Diabetes Progression. Ramazi, R.; Perndorfer, C.; Soriano, E.; Laurenceau, J.; and Beheshti, R. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pages 253–258, New York, NY, USA, 2019. Association for Computing Machinery
doi   link   bibtex   1 download  
Using Agent-Based Models to Understand Health-Related Social Norms. Sukthankar, G.; and Beheshti, R. In Social-Behavioral Modeling for Complex Systems, 27, pages 633–654. John Wiley and Sons, Ltd, 2019.
doi   link   bibtex  
  2018 (1)
A predictive model of rat calorie intake as a function of diet energy density. Beheshti, R.; Treesukosol, Y.; Igusa, T.; and Moran, T. H. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 315(2): R255-R266. 8 2018.
doi   link   bibtex  
  2017 (2)
Taking dietary habits into account: A computational method for modeling food choices that goes beyond price. Beheshti, R.; Jones-Smith, J. C.; and Igusa, T. PLOS ONE, 12(5): e0178348. 5 2017.
Taking dietary habits into account: A computational method for modeling food choices that goes beyond price [link]Paper   doi   link   bibtex  
Comparing methods of targeting obesity interventions in populations: An agent-based simulation. Beheshti, R.; Jalalpour, M.; and Glass, T. A. SSM - Population Health, 3: 211–218. 12 2017.
doi   link   bibtex  
  2016 (2)
Simulated Models Suggest That Price per Calorie Is the Dominant Price Metric That Low-Income Individuals Use for Food Decision Making. Beheshti, R.; Igusa, T.; and Jones-Smith, J. The Journal of Nutrition, 146(11): 2304–2311. 2016.
doi   link   bibtex  
Negotiations in Holonic multi-agent systems. Beheshti, R.; Barmaki, R.; and Mozayani, N. In Recent Advances in Agent-based Complex Automated Negotiation, pages 107–118. Springer, 2016.
link   bibtex  
  2015 (3)
A hybrid modeling approach for parking and traffic prediction in urban simulations. Beheshti, R.; and Sukthankar, G. AI and SOCIETY, 30(3): 333–344. 2015.
link   bibtex  
Cognitive Social Learners: An Architecture for Modeling Normative Behavior. Beheshti, R.; Ali, A. M.; and Sukthankar, G. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2017–2023, Austin, TX, 1 2015.
link   bibtex  
Modeling Tipping Point Theory using Normative Multi-agent Systems. Beheshti, R.; and Sukthankar, G. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1731–1732, 2015.
link   bibtex  
  2014 (3)
A Normative Agent-based Model for Predicting Smoking Cessation. Beheshti, R.; and Sukthankar, G. In Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems (AAMAS), pages 557–564, 2014.
link   bibtex  
HOMAN, a learning based negotiation method for holonic multi-agent systems. Beheshti, R.; and Mozayani, N. Journal of Intelligent and Fuzzy Systems, 26(2): 655–666. 2014.
link   bibtex  
Negotiations in Holonic Multi-agent systems. Beheshti, R.; Barmaki, R.; and Mozayani, N. In Proceedings of the International Workshop on Agent-based Complex Automated Negotiations (ACAN), 2014.
link   bibtex  
  2013 (2)
Analyzing Agent-based Models using Category Theory. Beheshti, R.; and Sukthankar, G. In IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT), pages 280–286, 2013.
link   bibtex  
Improving Markov Chain Monte Carlo Estimation with Agent-Based Models. Beheshti, R.; and Sukthankar, G. In Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP), pages 495–502, 2013.
link   bibtex  
  2012 (1)
Extracting Agent-Based Models of Human Transportation Patterns. Beheshti, R.; and Sukthankar, G. In Proceedings of the ASE/IEEE International Conference on Social Informatics, pages 157–164, 2012.
link   bibtex  
  2011 (1)
A New Mechanism for Negotiations in Multi-Agent Systems Based on ARTMAP Artificial Neural Network. Beheshti, R.; and Mozayani, N. In Agent and Multi-Agent Systems: Technologies and Applications, volume 6682, of Lecture Notes in Computer Science, pages 311–320. Springer Berlin Heidelberg, 2011.
link   bibtex  
  2009 (4)
Predicting opponents offers in multi-agent negotiations using ARTMAP neural network. Beheshti, R.; and Mozayani, N. In Proceedings of International Conference on Future Information Technology and Management Engineering (FITME), pages 600–603, 2009.
link   bibtex  
A multi-objective genetic algorithm method to support multi-agent negotiations. Beheshti, R.; and Rahmani, A. T In Proceedings of International Conference on Future Information Technology and Management Engineering (FITME), pages 596–599, 2009.
link   bibtex  
A New Hybrid Evolutionary Method With Ant Colony and PSO Algorithms Based on Fuzzy Decision Making. Beheshti, R.; Mozayani, N.; and Rahmani, A. T In Proceedings of the International Conference of Iranian Operation Research Society, 2009.
link   bibtex  
A Pairwise Classification Method with Support Vector Machines, Based on Game Theory and Alpha-beta Algorithm. Beheshti, R.; Analui, M.; and Minaei-Bidgol, B. In Proceedings of the International Conference of Iranian Operation Research Society, 2009.
link   bibtex