generated by bibbase.org
  2025 (3)
Accurately inferring physical activity levels and sleep from wrist-worn actigraphy recordings with sample rates as low as 10 Hz. Tsanas, A. IEEE Access, 13: 27257 - 27267. 2025.
Accurately inferring physical activity levels and sleep from wrist-worn actigraphy recordings with sample rates as low as 10 Hz [pdf]Paper   Accurately inferring physical activity levels and sleep from wrist-worn actigraphy recordings with sample rates as low as 10 Hz [link]Website   doi   link   bibtex   abstract  
Insights into endometriosis symptom trajectories and assessment of surgical intervention outcomes using longitudinal actigraphy. Edgley, K.; Saunders, P., T.; Whitaker, L., H.; Horne, A., W.; and Tsanas, A. npj Digital Medicine, 8(1): e236. 2025.
Insights into endometriosis symptom trajectories and assessment of surgical intervention outcomes using longitudinal actigraphy [pdf]Paper   doi   link   bibtex   abstract  
Statistical learning to identify and characterise neurodevelopmental outcomes at 2 years in babies born preterm: model development and validation using population-level data from England and Wales. Haider, S.; Tsanas, A.; Batty, G., D.; Reynolds, R., M.; Whalley, H., C.; Cox, S., R.; and Marioni, R., E. eBioMedicine, 117: 105811. 2025.
Statistical learning to identify and characterise neurodevelopmental outcomes at 2 years in babies born preterm: model development and validation using population-level data from England and Wales [pdf]Paper   Statistical learning to identify and characterise neurodevelopmental outcomes at 2 years in babies born preterm: model development and validation using population-level data from England and Wales [link]Website   doi   link   bibtex  
  2023 (4)
Temperature and Sleep Data Using Wrist-Worn Wearables. Edgley, K.; Chun, H., Y., Y.; Whiteley, W., N.; and Tsanas, A. Sensors, 23(3): 1069. 2023.
Temperature and Sleep Data Using Wrist-Worn Wearables [pdf]Paper   Temperature and Sleep Data Using Wrist-Worn Wearables [link]Website   doi   link   bibtex  
Symptom tracking in endometriosis using digital technologies: Knowns, unknowns, and future prospects. Edgley, K.; Horne, A., W.; Saunders, P., T.; and Tsanas, A. Cell Reports Medicine, 4(9): 101192. 2023.
Symptom tracking in endometriosis using digital technologies: Knowns, unknowns, and future prospects [pdf]Paper   Symptom tracking in endometriosis using digital technologies: Knowns, unknowns, and future prospects [link]Website   doi   link   bibtex   abstract  
Computational Approaches to Explainable Artificial Intelligence: Advances in Theory, Applications and Trends. Gorriz, J.; Álvarez-Illán, I.; Álvarez-Marquina, A.; Arcoa, J., E.; Atzmueller, M.; Ballarini, F.; Barakova, E.; Bologna, G.; Bonomini, M.; Castellanos-Dominguez, G.; Castillo-Barnes, D.; Cho, S., B.; Contreras, R.; Cuadra, J., M.; Domínguez, E.; Mateos, F.; Duro, R., J.; Elizondo, D.; Fernández-Caballero, A.; and Ferrández, J. Information Fusion, 100: 101945. 2023.
Computational Approaches to Explainable Artificial Intelligence: Advances in Theory, Applications and Trends [pdf]Paper   Computational Approaches to Explainable Artificial Intelligence: Advances in Theory, Applications and Trends [link]Website   doi   link   bibtex  
Estimating medication adherence from Electronic Health Records: comparing methods for mining and processing asthma treatment prescriptions. Tibble, H.; Sheikh, A.; and Tsanas, A. BMC medical research methodology, 23(1): 167. 2023.
Estimating medication adherence from Electronic Health Records: comparing methods for mining and processing asthma treatment prescriptions [pdf]Paper   Estimating medication adherence from Electronic Health Records: comparing methods for mining and processing asthma treatment prescriptions [link]Website   doi   link   bibtex   abstract  
  2022 (9)
Relevance, redundancy, and complementarity trade- off (RRCT): a principled, generic, robust feature selection tool. Tsanas, A. Patterns, 3: 100471. 2022.
Relevance, redundancy, and complementarity trade- off (RRCT): a principled, generic, robust feature selection tool [pdf]Paper   Relevance, redundancy, and complementarity trade- off (RRCT): a principled, generic, robust feature selection tool [link]Website   doi   link   bibtex  
Characterization of hypokinetic dysarthria using a convolutional neural netwok based on auditory receptive fields ⋆. Gomez-Vilda, P.; Gomez-Rodellar, A.; Palacios-Alonso, D.; Alvarez-Marquina, A.; and Tsanas, A. In IWINAC, pages in press, 2022.
Characterization of hypokinetic dysarthria using a convolutional neural netwok based on auditory receptive fields ⋆ [pdf]Paper   link   bibtex  
Characterizing Masseter Surface Electromyography on EEG-related Frequency Bands in Parkinson ’ s Disease Neuromotor. Gomez-Rodellar, A.; Gomez-Vilda, A.; Ferrandez-Vicente, J., M.; and Tsanas, A. In IWINAC, pages in press, 2022.
Characterizing Masseter Surface Electromyography on EEG-related Frequency Bands in Parkinson ’ s Disease Neuromotor [pdf]Paper   link   bibtex  
Estimating Medication Adherence from Electronic Health Records using Rolling Averages of Single Refill-based Estimates. Tibble, H.; Sheikh, A.; and Tsanas, A. In IEEE EMBC, pages in press, 2022.
Estimating Medication Adherence from Electronic Health Records using Rolling Averages of Single Refill-based Estimates [pdf]Paper   link   bibtex  
Exploring feature selection and feature transformation techniques to improve telephone-based biomedical speech signal processing towards Parkinson ’ s assessment Acoustic Characterization of Sustained. Tsanas, A.; and Arora, S. In BIOSIGNALS 2022 - 15th International Conference on Bio-Inspired Systems and Signal Processing; Part of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2022, pages 311-318, 2022.
Exploring feature selection and feature transformation techniques to improve telephone-based biomedical speech signal processing towards Parkinson ’ s assessment Acoustic Characterization of Sustained [pdf]Paper   link   bibtex  
Data driven subtyping of Parkinson’s using acoustic analysis of sustained vowels and cluster analysis: findings in the Parkinson’s voice initiative study. Tsanas, A.; and Arora, S. SN Computer Science, 3: 232. 2022.
Data driven subtyping of Parkinson’s using acoustic analysis of sustained vowels and cluster analysis: findings in the Parkinson’s voice initiative study [pdf]Paper   Data driven subtyping of Parkinson’s using acoustic analysis of sustained vowels and cluster analysis: findings in the Parkinson’s voice initiative study [link]Website   doi   link   bibtex  
Validation of the myocardial-ischemic-injury-index (MI3) machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population. Doudesis, D.; Lee, K., K.; Yang, J.; Wereski, R.; Shah, A., S.; Tsanas, A.; Anand, A.; Pickering, J., W.; Than, M., P.; Mills, N., L.; and Investigators, o., b., o., t., H. Lancet Digital Health, 4: e300-e308. 2022.
Validation of the myocardial-ischemic-injury-index (MI3) machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population [pdf]Paper   doi   link   bibtex  
Investigating Wrist-Based Acceleration Summary Measures across Different Sample Rates towards 24-Hour Physical Activity and Sleep Profile Assessment. Tsanas, A. Sensors, 22(16): 6152. 2022.
Investigating Wrist-Based Acceleration Summary Measures across Different Sample Rates towards 24-Hour Physical Activity and Sleep Profile Assessment [pdf]Paper   Investigating Wrist-Based Acceleration Summary Measures across Different Sample Rates towards 24-Hour Physical Activity and Sleep Profile Assessment [link]Website   doi   link   bibtex  
An EMG-based Eating Behaviour Monitoring System with Haptic Feedback to Promote Mindful Eating. Nicholls, B.; Ang, C., S.; Kanjo, E.; Siriaraya, P.; Bafti, S., M.; Yeo, W.; and Tsanas, A. Computers in Biology and Medicine, 149: 106068. 2022.
An EMG-based Eating Behaviour Monitoring System with Haptic Feedback to Promote Mindful Eating [pdf]Paper   An EMG-based Eating Behaviour Monitoring System with Haptic Feedback to Promote Mindful Eating [link]Website   doi   link   bibtex   abstract  
  2021 (12)
Remote assessment of Parkinson’s disease symptom severity using the simulated cellular mobile telephone network. Tsanas, A.; Little, M., A.; and Ramig, L., O. IEEE Access, 9: 11024-11036. 2021.
Remote assessment of Parkinson’s disease symptom severity using the simulated cellular mobile telephone network [pdf]Paper   doi   link   bibtex  
A neuromotor to acoustical jaw-tongue projection model with application in Parkinson’s disease hypokinetic dysarthria. Gómez, A.; Gómez, P.; Palacios, D.; Rodellar, V.; Nieto, V.; Álvarez, A.; and Tsanas, A. Frontiers in human neuroscience, 15: 622825. 2021.
A neuromotor to acoustical jaw-tongue projection model with application in Parkinson’s disease hypokinetic dysarthria [pdf]Paper   doi   link   bibtex  
Smartphone speech testing for symptom assessment in rapid eye movement sleep behavior disorder and Parkinson’s disease. Arora, S.; Lo, C.; Hu, M.; and Tsanas, A. IEEE Access, 9: 44813-44824. 2021.
Smartphone speech testing for symptom assessment in rapid eye movement sleep behavior disorder and Parkinson’s disease [pdf]Paper   Smartphone speech testing for symptom assessment in rapid eye movement sleep behavior disorder and Parkinson’s disease [link]Website   doi   link   bibtex   abstract  
Language function following preterm birth : prediction using machine learning. Valavani, E.; Blesa, M.; Galdi, P.; Sullivan, G.; Dean, B.; Cruickshank, H.; Sitko-rudnicka, M.; Bastin, M., E.; Chin, R., F., M.; Macintyre, D., J.; Fletcher-watson, S.; Boardman, J., P.; and Tsanas, A. Pediatric Research,1-10. 2021.
Language function following preterm birth : prediction using machine learning [pdf]Paper   Language function following preterm birth : prediction using machine learning [link]Website   doi   link   bibtex  
Measuring and reporting treatment adherence: What can we learn by comparing two respiratory conditions?. Tibble, H.; Flook, M.; Sheikh, A.; Tsanas, A.; Horne, R.; Vrijens, B.; De Geest, S.; and Stagg, H., R. British Journal of Clinical Pharmacology, 87(3): 825-836. 2021.
Measuring and reporting treatment adherence: What can we learn by comparing two respiratory conditions? [pdf]Paper   doi   link   bibtex   abstract  
Performance of monosyllabic vs multisyllabic diadochokinetic exercises in evaluating Parkinson’s disease hypokinetic dysarthria from fluency distributions. Gómez-Vilda, P.; Gómez-Rodellar, A.; Palacios-Alonso, D.; and Tsanas, A. In BIOSIGNALS 2021 - 14th International Conference on Bio-Inspired Systems and Signal Processing; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, volume 4, pages 114-123, 2021.
Performance of monosyllabic vs multisyllabic diadochokinetic exercises in evaluating Parkinson’s disease hypokinetic dysarthria from fluency distributions [pdf]Paper   doi   link   bibtex   abstract  
Acoustic to kinematic projection in Parkinson's disease dysarthria. Gómez, A.; Tsanas, A.; Gómez, P.; Palacios-Alonso, D.; Rodellar, V.; and Álvarez, A. Biomedical Signal Processing and Control, 66: e102422. 2021.
doi   link   bibtex   abstract  
Assessing Parkinson’s disease speech signal generalization of clustering results across three countries: findings in the Parkinson’s voice initiative study. Tsanas, A.; and Arora, S. In BIOSIGNALS 2021 - 14th International Conference on Bio-Inspired Systems and Signal Processing; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, pages 124-131, 2021.
Assessing Parkinson’s disease speech signal generalization of clustering results across three countries: findings in the Parkinson’s voice initiative study [pdf]Paper   doi   link   bibtex   abstract  
Eye-tracking for longitudinal assessment of social cognition in children born preterm. Dean, B.; Ginnell, L.; Ledsham, V.; Tsanas, A.; Telford, E.; Sparrow, S.; Fletcher-Watson, S.; and Boardman, J., P. Journal of Child Psychology and Psychiatry and Allied Disciplines, 62(4): 470-480. 2021.
Eye-tracking for longitudinal assessment of social cognition in children born preterm [pdf]Paper   doi   link   bibtex   abstract  
Smartphone ‑ recorded physical activity for estimating cardiorespiratory fitness. Eades, M., T.; Tsanas, A.; Juraschek, S., P.; Kramer, D., B.; Gervino, E.; and Mukamal, K., J. Scientific Reports, 11: 14851. 2021.
Smartphone ‑ recorded physical activity for estimating cardiorespiratory fitness [pdf]Paper   Smartphone ‑ recorded physical activity for estimating cardiorespiratory fitness [link]Website   doi   link   bibtex  
Assessing Parkinson’s disease at scale using telephone-recorded speech: insights from the Parkinson’s Voice Initiative. Arora, S.; and Tsanas, A. Diagnostics, 11(10): e1892. 2021.
Assessing Parkinson’s disease at scale using telephone-recorded speech: insights from the Parkinson’s Voice Initiative [pdf]Paper   doi   link   bibtex  
Mobile devices and wearable technology for measuring patient outcomes after surgery: a systematic review. Knight, S., R.; Ng, N.; Tsanas, A.; Mclean, K.; Pagliari, C.; and Harrison, E., M. npj Digital Medicine, 4(1): 157. 2021.
Mobile devices and wearable technology for measuring patient outcomes after surgery: a systematic review [pdf]Paper   doi   link   bibtex   abstract  
  2020 (13)
Objective characterization of activity, sleep, and circadian rhythm patterns using a wrist-worn actigraphy sensor: insights into post-traumatic stress disorder. Tsanas, A.; Woodward, E.; and Ehlers, A. JMIR mHealth and uHealth, 8(4): e14306. 2020.
Objective characterization of activity, sleep, and circadian rhythm patterns using a wrist-worn actigraphy sensor: insights into post-traumatic stress disorder [pdf]Paper   doi   link   bibtex  
Artificial intelligence within the interplay between natural and artificial Computation : advances in data science , trends and applications. Juan, M., G.; Ram, J.; Suckling, J.; Leming, M.; Zhang, Y.; Ram, J.; Bonomini, P.; Casado, F., E.; Charte, D.; Charte, F.; Contreras, R.; Duro, R., J.; Fern, A.; and Mart, R. Neurocomputing, 410: 237-270. 2020.
Artificial intelligence within the interplay between natural and artificial Computation : advances in data science , trends and applications [pdf]Paper   link   bibtex  
Beyond mobile apps: a survey of technologies for mental well-being. Woodward, K.; Kanjo, E.; Brown, D.; McGinnity, T.; Inkster, B.; Macintyre, D.; and Tsanas, A. IEEE Transactions Affective Computing, (in press). 2020.
Beyond mobile apps: a survey of technologies for mental well-being [pdf]Paper   Beyond mobile apps: a survey of technologies for mental well-being [link]Website   doi   link   bibtex   abstract  
Telemedicine cognitive behavioral therapy for anxiety after stroke: proof-of-concept randomized controlled trial. Chun, H., Y., Y.; Carson, A., J.; Tsanas, A.; Dennis, M., S.; Mead, G., E.; Calabria, C.; and Whiteley, W., N. Stroke, 51(8): 2297-2306. 2020.
Telemedicine cognitive behavioral therapy for anxiety after stroke: proof-of-concept randomized controlled trial [pdf]Paper   doi   link   bibtex   abstract  
Large-scale clustering of people diagnosed with Parkinson’s disease using acoustic analysis of sustained vowels: Findings in the Parkinson’s voice initiative study. Tsanas, A.; and Arora, S. BIOSIGNALS 2020 - 13th International Conference on Bio-Inspired Systems and Signal Processing, Proceedings; Part of 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020,369-376. 2020.
Large-scale clustering of people diagnosed with Parkinson’s disease using acoustic analysis of sustained vowels: Findings in the Parkinson’s voice initiative study [pdf]Paper   doi   link   bibtex   abstract  
Data-driven insights towards risk assessment of postpartum depression. Valavani, E.; Doudesis, D.; Kourtesis, I.; Chin, R., F.; MacIntyre, D., J.; Fletcher-Watson, S.; Boardman, J., P.; and Tsanas, A. BIOSIGNALS 2020 - 13th International Conference on Bio-Inspired Systems and Signal Processing, Proceedings; Part of 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020,382-389. 2020.
Data-driven insights towards risk assessment of postpartum depression [pdf]Paper   doi   link   bibtex   abstract  
Assessing preferred proximity between different types of embryonic stem cells. Wang, M.; Tsanas, A.; Blin, G.; and Robertson, D. In BIOSIGNALS 2020 - 13th International Conference on Bio-Inspired Systems and Signal Processing, Proceedings; Part of 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020, pages 377-381, 2020.
Assessing preferred proximity between different types of embryonic stem cells [pdf]Paper   doi   link   bibtex   abstract  
Challenges of clustering multimodal clinical data: Review of applications in asthma subtyping. Horne, E.; Tibble, H.; Sheikh, A.; and Tsanas, A. JMIR Medical Informatics, 8(5): e16452. 2020.
Challenges of clustering multimodal clinical data: Review of applications in asthma subtyping [pdf]Paper   doi   link   bibtex   abstract  
Predicting pattern formation in embryonic stem cells using a minimalist, agent-based probabilistic model. Wang, M.; Tsanas, A.; Blin, G.; and Robertson, D. Scientific Reports, 10(1): e16209. 12 2020.
Predicting pattern formation in embryonic stem cells using a minimalist, agent-based probabilistic model [pdf]Paper   doi   link   bibtex   abstract  
Artificial intelligence within the interplay between natural and artificial Computation : advances in data science , trends and applications. Juan, M., G.; Ram, J.; Suckling, J.; Leming, M.; Zhang, Y.; Ram, J.; Bonomini, P.; Casado, F., E.; Charte, D.; Charte, F.; Contreras, R.; Duro, R., J.; Fern, A.; and Mart, R. Neurocomputing, 410: 237-270. 2020.
Artificial intelligence within the interplay between natural and artificial Computation : advances in data science , trends and applications [pdf]Paper   link   bibtex  
A data-driven typology of asthma medication adherence using cluster analysis. Tibble, H.; Chan, A.; Mitchell, E., A.; Horne, E.; Doudesis, D.; Horne, R.; Mizani, M., A.; Sheikh, A.; and Tsanas, A. Scientific Reports, 10(1): e14999. 2020.
A data-driven typology of asthma medication adherence using cluster analysis [pdf]Paper   A data-driven typology of asthma medication adherence using cluster analysis [link]Website   doi   link   bibtex   abstract  
Linkage of primary care prescribing records and pharmacy dispensing Records in the Salford Lung Study: application in asthma. Tibble, H.; Lay-Flurrie, J.; Sheikh, A.; Horne, R.; Mizani, M., A.; and Tsanas, A. BMC Medical Research Methodology, 20(1): e303. 2020.
Linkage of primary care prescribing records and pharmacy dispensing Records in the Salford Lung Study: application in asthma [pdf]Paper   doi   link   bibtex   abstract  
Parkinson’s Disease Glottal Source Characterization: Phonation Feature Distributions vs Amplitude Probability Density Functions. Álvarez, A.; and Palacios, D. In BIOSIGNALS 2020 - 13th International Conference on Bio-Inspired Systems and Signal Processing, Proceedings; Part of 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020, pages 359-368, 2020.
Parkinson’s Disease Glottal Source Characterization: Phonation Feature Distributions vs Amplitude Probability Density Functions [pdf]Paper   link   bibtex  
  2019 (14)
New insights into Parkinson’s disease through statistical analysis of standard clinical scales quantifying symptom severity. Tsanas, A. In 41st IEEE Engineering in Medicine and Biology Conference, pages (in press), 2019.
New insights into Parkinson’s disease through statistical analysis of standard clinical scales quantifying symptom severity [pdf]Paper   link   bibtex  
An EMG-based eating behaviour monitoring system with haptic feedback to promote mindful eating. Nicholls, B.; Ang, C.; Eiman, K.; Siriaraya, P.; Yeo, W.; and Tsanas, A. 2019.
link   bibtex   abstract  
Assessing an Application of Spontaneous Stressed Speech - Emotions Portal. Palacios-Alonso, D.; Lázaro-Carrascosa, C.; López-Arribas, A.; Meléndez-Morales, G.; Gómez-Rodellar, A.; Loro-Álavez, A.; Nieto-Lluis, V.; Rodellar-Biarge, V.; Tsanas, A.; and Gómez-Vilda, P. Volume 11486 LNCS 2019.
doi   link   bibtex   abstract  
Quantifying ultrasonic mouse vocalizations using acoustic analysis in a supervised statistical machine learning framework. Vogel, A.; Tsanas, A.; and Scattoni, M. Scientific Reports, 9: 8100. 2019.
Quantifying ultrasonic mouse vocalizations using acoustic analysis in a supervised statistical machine learning framework [pdf]Paper   Quantifying ultrasonic mouse vocalizations using acoustic analysis in a supervised statistical machine learning framework [pdf]Website   doi   link   bibtex   abstract  
Investigating motility and pattern formation in pluripotent stem cells through agent-based modeling. Wang, M.; Tsanas, A.; Blin, G.; and Robertson, D. In Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, 2019.
doi   link   bibtex   abstract  
Heterogeneity in asthma medication adherence measurement. Tibble, H.; Chan, A.; Mitchell, E.; Horne, R.; Mizani, M.; Sheikh, A.; and Tsanas, A. In Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, 2019.
doi   link   bibtex   abstract  
Applications of Machine Learning in Real-life Digital Health Interventions : A Review of the Literature. Triantafyllidis, A., K.; and Tsanas, A. Journal of Medical Internet Research, (in press)(4): e12286. 2019.
Applications of Machine Learning in Real-life Digital Health Interventions : A Review of the Literature [pdf]Paper   doi   link   bibtex  
Biomedical speech signal insights from a large scale cohort across seven countries: The Parkinson’s voice initiative study. Tsanas, A.; and Arora, S. In Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA), pages 45-48, 2019.
Biomedical speech signal insights from a large scale cohort across seven countries: The Parkinson’s voice initiative study [pdf]Paper   link   bibtex   abstract  
New insights into Parkinson’s disease through statistical analysis of standard clinical scales quantifying symptom severity. Tsanas, A. In 41st IEEE Engineering in Medicine and Biology Conference, pages 3412-3415, 2019.
New insights into Parkinson’s disease through statistical analysis of standard clinical scales quantifying symptom severity [pdf]Paper   New insights into Parkinson’s disease through statistical analysis of standard clinical scales quantifying symptom severity [link]Website   doi   link   bibtex  
Applications of Machine Learning in Real-life Digital Health Interventions: Review of the Literature. Triantafyllidis, A., K.; and Tsanas, A. Journal of Medical Internet Research, 21(4): e12286. 2019.
Applications of Machine Learning in Real-life Digital Health Interventions: Review of the Literature [pdf]Paper   link   bibtex  
Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Than, M., P.; Pickering, J., W.; Sandoval, Y.; Shah, A., S., V.; Tsanas, A.; Apple, F., S.; Blankenberg, S.; Cullen, L.; Mueller, C.; Neumann, J., T.; Twerenbold, R.; Westermann, D.; Beshiri, A.; Mills, N., L.; and MI3 collaborative Circulation, 140: 899-909. 2019.
Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. [pdf]Paper   Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. [link]Website   doi   link   bibtex   abstract  
Predicting asthma attacks in primary care: Protocol for developing a machine learning-based prediction model. Tibble, H.; Tsanas, A.; Horne, E.; Horne, R.; Mizani, M.; Simpson, C.; and Sheikh, A. BMJ Open, 9(7): e028375. 2019.
Predicting asthma attacks in primary care: Protocol for developing a machine learning-based prediction model [link]Website   doi   link   bibtex   abstract  
Exploring telephone-quality speech signals towards parkinson's disease assessment in a large acoustically non-controlled study. Tsanas, A.; and Arora, S. In Proceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019, pages 953-956, 2019.
doi   link   bibtex   abstract  
Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice. Arora, S.; Baghai-Ravary, L.; and Tsanas, A. The Journal of the Acoustical Society of America, 145(5): 2871-2884. 2019.
Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice [pdf]Paper   Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice [link]Website   doi   link   bibtex   abstract  
  2018 (4)
Investigating voice as a biomarker for leucine-rich repeat kinase 2-associated Parkinson’s disease. Arora, S.; Visanji, N., P.; Mestre, T., A.; Tsanas, A.; Aldakheel, A.; Connolly, B., S.; Gasca-salas, C.; Kern, D., S.; Jain, J.; Slow, E., J.; Faust-Socher, A.; Lang, A., E.; Little, M., A.; and Marras, C. Journal of Parkinson's Disease, 8(4): 503-510. 2018.
Investigating voice as a biomarker for leucine-rich repeat kinase 2-associated Parkinson’s disease [pdf]Paper   doi   link   bibtex   abstract  
High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Shah, A., S., V.; Anand, A.; Strachan, F., E.; Ferry, A., V.; Lee, K., K.; Chapman, A., R.; Sandeman, D.; Stables, C., L.; Adamson, P., D.; Andrews, J., P., M.; Anwar, M., S.; Hung, J.; Moss, A., A., J.; O'Brien, R.; Berry, C.; Findlay, I.; Walker, S.; Cruickshank, A.; Reid, A.; Gray, A.; Collinson, P., O.; Apple, F., S.; McAllister, D., A.; Maguire, D.; Fox, K., A., A.; Newby, D., E.; Tuck, C.; Harkess, R., R.; Parker, R., A.; Keerie, C.; Weir, C., J.; Mills, N., L.; Investigators, o., b., o., t., H.; Mills, N., L.; Strachan, F., E.; Tuck, C.; Shah, A., S., V.; Anand, A.; Ferry, A., V.; Lee, K., K.; Chapman, A., R.; Sandeman, D.; Adamson, P., D.; Stables, C., L.; Marshall, L.; Stewart, S., D.; Fujisawa, T.; Vallejos, C., A.; Tsanas, A.; Hautvast, M.; McPherson, J.; McKinlay, L.; Newby, D., E.; Fox, K., A., A.; Berry, C.; Walker, S.; Weir, C., J.; Ford, I.; Gray, A.; Collinson, P., O.; Apple, F., S.; Reid, A.; Cruikshank, A.; Findlay, I.; Amoils, S.; McAllister, D., A.; Maguire, D.; Stevens, J.; Norrie, J.; Andrews, J., P., M.; Adamson, P., D.; Moss, A., A., J.; Anwar, M., S.; Hung, J.; Malo, J.; Fischbacher, C., M.; Croal, B., L.; Leslie, S., J.; Keerie, C.; Parker, R., A.; Walker, A.; Harkess, R., R.; Wackett, T.; Armstrong, R.; Flood, M.; Stirling, L.; MacDonald, C.; Sadat, I.; Finlay, F.; Charles, H.; Linksted, P.; Young, S.; Alexander, B.; Duncan, C.; Moss, A., A., J.; Stewart, S., D.; Marshall, L.; Stables, C., L.; Fox, K., A., A.; Reid, A.; McAllister, D., A.; McKinlay, L.; Alexander, B.; Berry, C.; Findlay, I.; Leslie, S., J.; Walker, S.; O'Brien, R.; Cruickshank, A.; Young, S.; Apple, F., S.; Strachan, F., E.; Gray, A.; Tsanas, A.; Croal, B., L.; Sandeman, D.; Maguire, D.; Anand, A.; Shah, A., S., V.; Fujisawa, T.; Anwar, M., S.; Linksted, P.; Chapman, A., R.; Wackett, T.; Mills, N., L.; McPherson, J.; MacDonald, C.; Harkess, R., R.; Stirling, L.; Weir, C., J.; Andrews, J., P., M.; Finlay, F.; Fischbacher, C., M.; Ferry, A., V.; Newby, D., E.; Sadat, I.; Armstrong, R.; Charles, H.; Duncan, C.; Hung, J.; Parker, R., A.; Adamson, P., D.; Lee, K., K.; Hautvast, M.; Vallejos, C., A.; Keerie, C.; and Malo, J. The Lancet, 392(10151): 919-928. 2018.
High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial [pdf]Paper   doi   link   bibtex  
Variability in phase and amplitude of diurnal rhythms is related to variation of mood in bipolar and borderline personality disorder. Carr, O.; Saunders, K., E., A.; Tsanas, A.; Palmius, N.; Geddes, J., R.; Foster, R.; Goodwin, G., M.; and De Vos, M. Scientific reports, 8: 1649. 2018.
Variability in phase and amplitude of diurnal rhythms is related to variation of mood in bipolar and borderline personality disorder [pdf]Paper   Variability in phase and amplitude of diurnal rhythms is related to variation of mood in bipolar and borderline personality disorder [link]Website   doi   link   bibtex  
Desynchronization of diurnal rhythms in bipolar disorder and borderline personality disorder. Carr, O.; Saunders, K.; Bilderbeck, A.; Tsanas, A.; Palmius, N.; Geddes, J.; Foster, R.; De Vos, M.; and Goodwin, G. Translational Psychiatry, 8: 79. 2018.
Desynchronization of diurnal rhythms in bipolar disorder and borderline personality disorder [pdf]Paper   doi   link   bibtex   abstract   1 download  
  2017 (3)
Exploring Pause Fillers in Conversational Speech for Forensic Phonetics: Findings in a Spanish Cohort Including Twins. Tsanas, A.; San Segundo, E.; and Gómez-Vilda, P. In 8th International Conference of Pattern Recognition Systems, 2017.
Exploring Pause Fillers in Conversational Speech for Forensic Phonetics: Findings in a Spanish Cohort Including Twins [pdf]Paper   doi   link   bibtex  
Detecting Bipolar Depression from Geographic Location Data. Palmius, N.; Tsanas, A.; Saunders, K., E., A.; Bilderbeck, A., C.; Geddes, J., R.; Goodwin, G., M.; and De Vos, M. IEEE Transactions on Biomedical Engineering, 64(8): 1761-1771. 2017.
Detecting Bipolar Depression from Geographic Location Data [pdf]Paper   Detecting Bipolar Depression from Geographic Location Data [link]Website   doi   link   bibtex  
Euclidean Distances as measures of speaker similarity including identical twin pairs: a forensic investigation using source and filter voice characteristics. San Segundo, E.; Tsanas, A.; and Gomez-Vilda, P. Forensic Science International, 270: 25-38. 2017.
Euclidean Distances as measures of speaker similarity including identical twin pairs: a forensic investigation using source and filter voice characteristics [pdf]Paper   Euclidean Distances as measures of speaker similarity including identical twin pairs: a forensic investigation using source and filter voice characteristics [link]Website   doi   link   bibtex   abstract  
  2016 (4)
Insomnia, Nightmares, and Chronotype as Markers of Risk for Severe Mental Illness: Results from a Student Population. Sheaves, B.; Porcheret, K.; Tsanas, A.; Espie, C.; Foster, R., G.; Freeman, D.; Harrison, P.; Wulff, K.; and Goodwin, G. Sleep, 39: 173-181. 2016.
Insomnia, Nightmares, and Chronotype as Markers of Risk for Severe Mental Illness: Results from a Student Population [pdf]Paper   link   bibtex   abstract  
Daily longitudinal self-monitoring of mood variability in bipolar disorder and borderline personality disorder. Tsanas, A.; Saunders, K.; Bilderbeck, A.; Palmius, N.; Osipov, M.; Clifford, G.; Goodwin, G.; and De Vos, M. Journal of Affective Disorders, 205: 225-233. 2016.
Daily longitudinal self-monitoring of mood variability in bipolar disorder and borderline personality disorder [pdf]Paper   Daily longitudinal self-monitoring of mood variability in bipolar disorder and borderline personality disorder [link]Website   doi   link   bibtex   abstract  
The power of data mining in diagnosis of childhood pneumonia. Naydenova, E.; Tsanas, A.; Howie, S.; Casals-Pascual, C.; and De Vos, M. Journal of the Royal Society, Interface / the Royal Society, 13(120): 20160266. 2016.
The power of data mining in diagnosis of childhood pneumonia [pdf]Paper   The power of data mining in diagnosis of childhood pneumonia [link]Website   doi   link   bibtex   abstract  
Phonation biomechanics in quantifying parkinson’s disease symptom severity. Gómez-Vilda, P.; Álvarez-Marquina, A.; Tsanas, A.; Lázaro-Carrascosa, C.; Rodellar-Biarge, V.; Nieto-Llui, V.; and Martínez-Olalla, R. Volume 48 . Recent Advances in Nonlinear Speech Processing, pages 93-102. Springer, 2016.
doi   link   bibtex   abstract  
  2015 (1)
Smart diagnostic algorithms for automated detection of childhood pneumonia in resource-constrained settings. Naydenova, E.; Tsanas, A.; Casals-Pascual, C.; De Vos, M.; and Howie, S. In Proceedings of the 5th IEEE Global Humanitarian Technology Conference, GHTC 2015, 2015.
doi   link   bibtex   abstract  
  2014 (3)
Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease. Tsanas, A.; Little, M., A.; Fox, C.; and Ramig, L., O. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(1): 181-190. 2014.
Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease [pdf]Paper   doi   link   bibtex   abstract  
Current Impact, Future Prospects and Implications of Mobile Healthcare in India. Kappal, R.; Mehndiratta, A.; Anandaraj, P.; and Tsanas, A. cajgh. 11 2014.
doi   link   bibtex  
Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering. Tsanas, A.; Zañartu, M.; Little, M., A.; Fox, C.; Ramig, L., O.; and Clifford, G., D. The Journal of the Acoustical Society of America, 135(5): 2885-901. 2014.
Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering. [pdf]Paper   Robust fundamental frequency estimation in sustained vowels: detailed algorithmic comparisons and information fusion with adaptive Kalman filtering. [link]Website   doi   link   bibtex   abstract  
  2013 (2)
A methodology for the analysis of medical data. Tsanas, A.; Little, M., A.; and McSharry, P., E. Handbook of Systems and Complexity in Health, pages 113-125. Sturmberg, J.; and Martin, C., editor(s). Springer, 2013.
Handbook of Systems and Complexity in Health [pdf]Paper   link   bibtex  
Increased expression of phosphorylated NBS1, a key molecule of the DNA damage response machinery, is an adverse prognostic factor in patients with de novo myelodysplastic syndromes. Kefala, M.; Papageorgiou, S., G.; Kontos, C., K.; Economopoulou, P.; Tsanas, A.; Pappa, V.; Panayiotides, I., G.; Gorgoulis, V., G.; Patsouris, E.; and Foukas, P., G. Leukemia Research, 37(11): 1576-1582. 2013.
Increased expression of phosphorylated NBS1, a key molecule of the DNA damage response machinery, is an adverse prognostic factor in patients with de novo myelodysplastic syndromes [pdf]Paper   Increased expression of phosphorylated NBS1, a key molecule of the DNA damage response machinery, is an adverse prognostic factor in patients with de novo myelodysplastic syndromes [link]Website   doi   link   bibtex   abstract  
  2012 (1)
Novel speech signal processing algorithms for high-accuracy classification of Parkinsons disease. Tsanas, A.; Little, M., A.; McSharry, P., E.; Spielman, J.; and Ramig, L., O. IEEE Transactions on Biomedical Engineering, 59(5): 1264-1271. 2012.
Novel speech signal processing algorithms for high-accuracy classification of Parkinsons disease [pdf]Paper   doi   link   bibtex   abstract  
  2011 (1)
Robust parsimonious selection of dysphonia measures for telemonitoring of parkinson's disease symptom severity. Tsanas, A.; Little, M.; McSharry, P.; and Ramig, L. In Models and Analysis of Vocal Emissions for Biomedical Applications - 7th International Workshop, MAVEBA 2011, pages 169-172, 2011.
link   bibtex   abstract  
  2010 (2)
Accurate Telemonitoring of Parkinson’s Disease Progression by Noninvasive Speech Tests. Tsanas, A.; Little, M., A.; Mcsharry, P., E.; Member, S.; and Ramig, L., O. IEEE transactions on biomedical engineering, 57(4): 884-893. 2010.
Accurate Telemonitoring of Parkinson’s Disease Progression by Noninvasive Speech Tests [pdf]Paper   link   bibtex  
Practical telemonitoring of Parkinson’ s disease using nonlinear onlinear speech signal processing. Tsanas, A. Ph.D. Thesis, 2010.
Practical telemonitoring of Parkinson’ s disease using nonlinear onlinear speech signal processing [pdf]Paper   link   bibtex