generated by bibbase.org
  2024 (2)
GeF-seq: A Simple Procedure for Base-Pair Resolution ChIP-seq. Chumsakul, O.; Nakamura, K.; Fukamachi, K.; Ishikawa, S.; and Oshima, T. In Bacterial Chromatin: Methods and Protocols, pages 39–53. Springer US New York, NY, 2024.
link   bibtex  
miR-4521—A novel biomarker for human lentigos. Maeno, H.; Suzuki-Horiuchi, Y.; Funakoshi, A.; Chumsakul, O.; Sato, Y.; Ishii, T.; and Seykora, J. T Experimental dermatology, 33(6). 2024.
link   bibtex  
  2022 (1)
Constitutive expression of the global regulator AbrB restores the growth defect of a genome-reduced Bacillus subtilis strain and improves its metabolite production. Yamamoto, J.; Chumsakul, O.; Toya, Y.; Morimoto, T.; Liu, S.; Masuda, K.; Kageyama, Y.; Hirasawa, T.; Matsuda, F.; Ogasawara, N.; and others DNA Research, 29(3): dsac015. 2022.
link   bibtex  
  2021 (1)
Whole-genome analysis reveals that the nucleoid protein IHF predominantly binds to the replication origin oriC specifically at the time of initiation. Kasho, K.; Oshima, T.; Chumsakul, O.; Nakamura, K.; Fukamachi, K.; and Katayama, T. Frontiers in Microbiology, 12: 697712. 2021.
link   bibtex  
  2020 (1)
Apigenin regulates activation of microglia and counteracts retinal degeneration. Chumsakul, O.; Wakayama, K.; Tsuhako, A.; Baba, Y.; Takai, Y.; Kurose, T.; Honma, Y.; and Watanabe, S. Journal of Ocular Pharmacology and Therapeutics, 36(5): 311–319. 2020.
link   bibtex  
  2019 (1)
Apigenin Inhibits LPS-induced Microglia Activation by Modulating MicroRNA Expression. Chumsakul, O.; Takai, Y.; Kurose, T.; and Honma, Y. Investigative Ophthalmology & Visual Science, 60(9): 3998–3998. 2019.
link   bibtex  
  2018 (1)
GeF-seq: A simple procedure for base pair resolution ChIP-seq. Chumsakul, O.; Nakamura, K.; Ishikawa, S.; and Oshima, T. In Bacterial Chromatin: Methods and Protocols, pages 33–47. Springer New York New York, NY, 2018.
link   bibtex  
  2017 (1)
Genome-wide analysis of ResD, NsrR, and Fur binding in Bacillus subtilis during anaerobic fermentative growth by in vivo footprinting. Chumsakul, O.; Anantsri, D. P; Quirke, T.; Oshima, T.; Nakamura, K.; Ishikawa, S.; and Nakano, M. M Journal of bacteriology, 199(13): 10–1128. 2017.
link   bibtex  
  2016 (1)
Replication fork progression is paused in two large chromosomal zones flanking the DNA replication origin in Escherichia coli. Akiyama, M. T.; Oshima, T.; Chumsakul, O.; Ishikawa, S.; and Maki, H. Genes to Cells, 21(8): 907–914. 2016.
link   bibtex  
  2015 (3)
Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. Tanaka, K.; Iwasaki, K.; Morimoto, T.; Matsuse, T.; Hasunuma, T.; Takenaka, S.; Chumsakul, O.; Ishikawa, S.; Ogasawara, N.; and Yoshida, K. BMC microbiology, 15(1): 43. 2015.
link   bibtex  
Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis. Toya, Y.; Hirasawa, T.; Ishikawa, S.; Chumsakul, O.; Morimoto, T.; Liu, S.; Masuda, K.; Kageyama, Y.; Ozaki, K.; Ogasawara, N.; and others Bioscience, biotechnology, and biochemistry, 79(12): 2073–2080. 2015.
link   bibtex  
The role of $α$-CTD in the genome-wide transcriptional regulation of the Bacillus subtilis cells. Murayama, S.; Ishikawa, S.; Chumsakul, O.; Ogasawara, N.; and Oshima, T. PloS one, 10(7): e0131588. 2015.
link   bibtex  
  2014 (1)
The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control. Henares, B.; Kommineni, S.; Chumsakul, O.; Ogasawara, N.; Ishikawa, S.; and Nakano, M. M Journal of bacteriology, 196(2): 493–503. 2014.
link   bibtex  
  2013 (2)
High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq. Chumsakul, O.; Nakamura, K.; Kurata, T.; Sakamoto, T.; Hobman, J. L; Ogasawara, N.; Oshima, T.; and Ishikawa, S. DNA research, 20(4): 325–338. 2013.
link   bibtex  
Enhanced Cry1Da production in Bacillus thuringiensis by driving expression from the $σ$E-dependent BtI promoter. Wanapaisan, P; Chumsakul, O; and Panbangred, W Journal of applied microbiology, 115(3): 859–871. 2013.
link   bibtex  
  2011 (1)
Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Chumsakul, O.; Takahashi, H.; Oshima, T.; Hishimoto, T.; Kanaya, S.; Ogasawara, N.; and Ishikawa, S. Nucleic acids research, 39(2): 414–428. 2011.
link   bibtex  
  2010 (1)
Distribution of AbrB and Abh on the Bacillus subtilis genome and its implication on their function. Chumsakul, O. . 2010.
link   bibtex