generated by bibbase.org
  2022 (1)
Auger electron angular distributions following excitation or ionization from the Xe 3d and F 1s levels in xenon difluoride. Forbes, R.; Hockett, P.; Powis, I.; Bozek, J.; Pratt, S.; and Holland, D. Physical Chemistry Chemical Physics, 24(3): 1367-1379. 2022. cited By 0
Auger electron angular distributions following excitation or ionization from the Xe 3d and F 1s levels in xenon difluoride [link]Paper   doi   link   bibtex  
  2021 (4)
Photoionization from the Xe 4d orbitals of XeF2. Forbes, R.; Hockett, P.; Powis, I.; Bozek, J.; Holland, D.; and Pratt, S. Journal of Chemical Physics, 155(19). 2021. cited By 1
Photoionization from the Xe 4d orbitals of XeF2 [link]Paper   doi   link   bibtex  
Towards molecular frame photoelectron angular distributions in polyatomic molecules from lab frame coherent rotational wavepacket evolution. Gregory, M.; Hockett, P.; Stolow, A.; and Makhija, V. Journal of Physics B: Atomic, Molecular and Optical Physics, 54(14). 2021. cited By 0
Towards molecular frame photoelectron angular distributions in polyatomic molecules from lab frame coherent rotational wavepacket evolution [link]Paper   doi   link   bibtex  
Femtosecond molecular dynamics viewed by multi-model imaging. Liu, Y.; Yang, J.; Nunes, J.; Forbes, R.; Wolf, T.; Shen, X.; Cheng, C.; Lin, M.; Hegazy, K.; Hockett, P.; Stolow, A.; Centurion, M.; Rozgonyi, T.; Marquetand, P.; Wang, X.; and Weinacht, T. 2021. cited By 0
Femtosecond molecular dynamics viewed by multi-model imaging [link]Paper   doi   link   bibtex  
Photoelectron angular distributions from resonant two-photon ionisation of adiabatically aligned naphthalene and aniline molecules. Arlt, J.; Singh, D.; Thompson, J.; Chatterley, A.; Hockett, P.; Stapelfeldt, H.; and Reid, K. Molecular Physics, 119(1-2). 2021. cited By 0
Photoelectron angular distributions from resonant two-photon ionisation of adiabatically aligned naphthalene and aniline molecules [link]Paper   doi   link   bibtex  
  2020 (3)
Multivariate discrimination in quantum target detection. Svihra, P.; Zhang, Y.; Hockett, P.; Ferrante, S.; Sussman, B.; England, D.; and Nomerotski, A. Applied Physics Letters, 117(4). 2020. cited By 6
Multivariate discrimination in quantum target detection [link]Paper   doi   link   bibtex  
Spectroscopic and Structural Probing of Excited-State Molecular Dynamics with Time-Resolved Photoelectron Spectroscopy and Ultrafast Electron Diffraction. Liu, Y.; Horton, S.; Yang, J.; Nunes, J.; Shen, X.; Wolf, T.; Forbes, R.; Cheng, C.; Moore, B.; Centurion, M.; Hegazy, K.; Li, R.; Lin, M.; Stolow, A.; Hockett, P.; Rozgonyi, T.; Marquetand, P.; Wang, X.; and Weinacht, T. Physical Review X, 10(2). 2020. cited By 11
Spectroscopic and Structural Probing of Excited-State Molecular Dynamics with Time-Resolved Photoelectron Spectroscopy and Ultrafast Electron Diffraction [link]Paper   doi   link   bibtex  
Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements. Zhang, Y.; England, D.; Nomerotski, A.; Svihra, P.; Ferrante, S.; Hockett, P.; and Sussman, B. Physical Review A, 101(5). 2020. cited By 20
Multidimensional quantum-enhanced target detection via spectrotemporal-correlation measurements [link]Paper   doi   link   bibtex  
  2019 (1)
Excited state dynamics of CH 2 I 2 and CH 2 BrI studied with UV pump VUV probe photoelectron spectroscopy. Horton, S.; Liu, Y.; Forbes, R.; Makhija, V.; Lausten, R.; Stolow, A.; Hockett, P.; Marquetand, P.; Rozgonyi, T.; and Weinacht, T. Journal of Chemical Physics, 150(17). 2019. cited By 12
Excited state dynamics of CH 2 I 2 and CH 2 BrI studied with UV pump VUV probe photoelectron spectroscopy [link]Paper   doi   link   bibtex  
  2018 (1)
Quantum-beat photoelectron-imaging spectroscopy of Xe in the VUV. Forbes, R.; Makhija, V.; Underwood, J.; Stolow, A.; Wilkinson, I.; Hockett, P.; and Lausten, R. Physical Review A, 97(6). 2018. cited By 6
Quantum-beat photoelectron-imaging spectroscopy of Xe in the VUV [link]Paper   doi   link   bibtex  
  2017 (6)
Monitoring non-adiabatic dynamics in CS2 with time- and energy-resolved photoelectron spectra of wavepackets. Wang, K.; McKoy, V.; Hockett, P.; Stolow, A.; and Schuurman, M. Chemical Physics Letters, 683: 579-585. 2017. cited By 4
Monitoring non-adiabatic dynamics in CS2 with time- and energy-resolved photoelectron spectra of wavepackets [link]Paper   doi   link   bibtex  
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry. Marceau, C.; Makhija, V.; Platzer, D.; Naumov, A.; Corkum, P.; Stolow, A.; Villeneuve, D.; and Hockett, P. Physical Review Letters, 119(8). 2017. cited By 23
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry [link]Paper   doi   link   bibtex  
Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera. Forbes, R.; Makhija, V.; Veyrinas, K.; Stolow, A.; Lee, J.; Burt, M.; Brouard, M.; Vallance, C.; Wilkinson, I.; Lausten, R.; and Hockett, P. Journal of Chemical Physics, 147(1). 2017. cited By 20
Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera [link]Paper   doi   link   bibtex  
Angle-resolved RABBITT: Theory and numerics. Hockett, P. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(15). 2017. cited By 16
Angle-resolved RABBITT: Theory and numerics [link]Paper   doi   link   bibtex   1 download  
Coherent imaging of an attosecond electron wave packet. Villeneuve, D.; Hockett, P.; Vrakking, M.; and Niikura, H. Science, 356(6343): 1150-1154. 2017. cited By 61
Coherent imaging of an attosecond electron wave packet [link]Paper   doi   link   bibtex  
Reply to Comment on 'Time delays in molecular photoionization'. Hockett, P.; Frumker, E.; Villeneuve, D.; and Corkum, P. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(7). 2017. cited By 0
Reply to Comment on 'Time delays in molecular photoionization' [link]Paper   doi   link   bibtex  
  2016 (1)
Time delay in molecular photoionization. Hockett, P.; Frumker, E.; Villeneuve, D.; and Corkum, P. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(9). 2016. cited By 42
Time delay in molecular photoionization [link]Paper   doi   link   bibtex  
  2015 (5)
Coherent control of photoelectron wavepacket angular interferograms. Hockett, P.; Wollenhaupt, M.; and Baumert, T. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(21). 2015. cited By 8
Coherent control of photoelectron wavepacket angular interferograms [link]Paper   doi   link   bibtex  
Complete photoionization experiments via ultrafast coherent control with polarization multiplexing. II. Numerics and analysis methodologies. Hockett, P.; Wollenhaupt, M.; Lux, C.; and Baumert, T. Physical Review A - Atomic, Molecular, and Optical Physics, 92(1). 2015. cited By 7
Complete photoionization experiments via ultrafast coherent control with polarization multiplexing. II. Numerics and analysis methodologies [link]Paper   doi   link   bibtex  
Maximum-information photoelectron metrology. Hockett, P.; Lux, C.; Wollenhaupt, M.; and Baumert, T. Physical Review A - Atomic, Molecular, and Optical Physics, 92(1). 2015. cited By 6
Maximum-information photoelectron metrology [link]Paper   doi   link   bibtex  
Nonclassical correlations between terahertz-bandwidth photons mediated by rotational quanta in hydrogen molecules. Bustard, P.; Erskine, J.; England, D.; Nunn, J.; Hockett, P.; Lausten, R.; Spanner, M.; and Sussman, B. Optics Letters, 40(6): 922-925. 2015. cited By 9
Nonclassical correlations between terahertz-bandwidth photons mediated by rotational quanta in hydrogen molecules [link]Paper   doi   link   bibtex  
General phenomenology of ionization from aligned molecular ensembles. Hockett, P. New Journal of Physics, 17. 2015. cited By 8
General phenomenology of ionization from aligned molecular ensembles [link]Paper   doi   link   bibtex  
  2014 (2)
Complete photoionization experiments via ultrafast coherent control with polarization multiplexing. Hockett, P.; Wollenhaupt, M.; Lux, C.; and Baumert, T. Physical Review Letters, 112(22). 2014. cited By 29
Complete photoionization experiments via ultrafast coherent control with polarization multiplexing [link]Paper   doi   link   bibtex  
Time-resolved photoelectron spectra of CS2: Dynamics at conical intersections. Wang, K.; McKoy, V.; Hockett, P.; and Schuurman, M. Physical Review Letters, 112(11). 2014. cited By 23
Time-resolved photoelectron spectra of CS2: Dynamics at conical intersections [link]Paper   doi   link   bibtex  
  2013 (1)
Probing ultrafast dynamics with time-resolved multi-dimensional coincidence imaging: Butadiene. Hockett, P.; Ripani, E.; Rytwinski, A.; and Stolow, A. Journal of Modern Optics, 60(17): 1409-1425. 2013. cited By 20
Probing ultrafast dynamics with time-resolved multi-dimensional coincidence imaging: Butadiene [link]Paper   doi   link   bibtex  
  2012 (5)
Erratum: Probing Polar Molecules with High Harmonic Spectroscopy (Physical Review Letters (2012) 109 (233904). Frumker, E.; Kajumba, N.; Bertrand, J.; Wörner, H.; Hebeisen, C.; Hockett, P.; Spanner, M.; Patchkovskii, S.; Paulus, G.; Villeneuve, D.; Naumov, A.; and Corkum, P. Physical Review Letters, 109(24). 2012. cited By 2
Erratum: Probing Polar Molecules with High Harmonic Spectroscopy (Physical Review Letters (2012) 109 (233904) [link]Paper   doi   link   bibtex  
Probing polar molecules with high harmonic spectroscopy. Frumker, E.; Kajumba, N.; Bertrand, J.; Wörner, H.; Hebeisen, C.; Hockett, P.; Spanner, M.; Patchkovskii, S.; Paulus, G.; Villeneuve, D.; Naumov, A.; and Corkum, P. Physical Review Letters, 109(23). 2012. cited By 56
Probing polar molecules with high harmonic spectroscopy [link]Paper   doi   link   bibtex  
Attosecond pulse trains generated with oriented molecules. Frumker, E.; Kajumba, N.; Bertrand, J.; Worner, H.; Hebeisen, C.; Hockett, P.; Spanner, M.; Patchkovskii, S.; Paulus, G.; Villeneuve, D.; and Corkum, P. 2012. cited By 0
Attosecond pulse trains generated with oriented molecules [link]Paper   link   bibtex  
Revealing the cooper minimum of N 2 by molecular frame high-harmonic spectroscopy. Bertrand, J.; Wörner, H.; Hockett, P.; Villeneuve, D.; and Corkum, P. Physical Review Letters, 109(14). 2012. cited By 52
Revealing the cooper minimum of N 2 by molecular frame high-harmonic spectroscopy [link]Paper   doi   link   bibtex  
Attosecond pulse trains generated with oriented molecules. Frumker, E.; Kajumba, N.; Bertrand, J.; Worner, H.; Hebeisen, C.; Hockett, P.; Spanner, M.; Patchkovskii, S.; Paulus, G.; Villeneuve, D.; and Corkum, P. 2012. cited By 0
Attosecond pulse trains generated with oriented molecules [link]Paper   doi   link   bibtex  
  2011 (3)
Rotational dephasing of symmetric top molecules: Analytic expressions and applications. Schalk, O.; and Hockett, P. Chemical Physics Letters, 517(4-6): 237-241. 2011. cited By 6
Rotational dephasing of symmetric top molecules: Analytic expressions and applications [link]Paper   doi   link   bibtex  
Time-resolved photoelectron spectroscopy: From wavepackets to observables. Wu, G.; Hockett, P.; and Stolow, A. Physical Chemistry Chemical Physics, 13(41): 18447-18467. 2011. cited By 83
Time-resolved photoelectron spectroscopy: From wavepackets to observables [link]Paper   doi   link   bibtex  
Time-resolved imaging of purely valence-electron dynamics during a chemical reaction. Hockett, P.; Bisgaard, C.; Clarkin, O.; and Stolow, A. Nature Physics, 7(8): 612-615. 2011. cited By 176
Time-resolved imaging of purely valence-electron dynamics during a chemical reaction [link]Paper   doi   link   bibtex  
  2010 (2)
Photoionization dynamics of ammonia (B1E″): Dependence on ionizing photon energy and initial vibrational level. Hockett, P.; Staniforth, M.; and Reid, K. Journal of Physical Chemistry A, 114(42): 11330-11336. 2010. cited By 3
Photoionization dynamics of ammonia (B1E″): Dependence on ionizing photon energy and initial vibrational level [link]Paper   doi   link   bibtex  
Photoelectron angular distributions from rotationally state-selected NH3(B1E″): Dependence on ion rotational state and polarization geometry. Hockett, P.; Staniforth, M.; and Reid, K. Molecular Physics, 108(7-9): 1045-1054. 2010. cited By 21
Photoelectron angular distributions from rotationally state-selected NH3(B1E″): Dependence on ion rotational state and polarization geometry [link]Paper   doi   link   bibtex  
  2009 (1)
Rotationally resolved photoelectron angular distributions from a nonlinear polyatomic molecule. Hockett, P.; Staniforth, M.; Reid, K.; and Townsend, D. Physical Review Letters, 102(25). 2009. cited By 33
Rotationally resolved photoelectron angular distributions from a nonlinear polyatomic molecule [link]Paper   doi   link   bibtex  
  2007 (2)
Complete determination of the photoionization dynamics of a polyatomic molecule. I. Experimental photoelectron angular distributions from à Au1 acetylene. Hockett, P.; King, A.; Powis, I.; and Reid, K. Journal of Chemical Physics, 127(15). 2007. cited By 5
Complete determination of the photoionization dynamics of a polyatomic molecule. I. Experimental photoelectron angular distributions from à Au1 acetylene [link]Paper   doi   link   bibtex  
Complete determination of the photoionization dynamics of a polyatomic molecule. II. Determination of radial dipole matrix elements and phases from experimental photoelectron angular distributions from à Au1 acetylene. Hockett, P.; and Reid, K. Journal of Chemical Physics, 127(15). 2007. cited By 11
Complete determination of the photoionization dynamics of a polyatomic molecule. II. Determination of radial dipole matrix elements and phases from experimental photoelectron angular distributions from à Au1 acetylene [link]Paper   doi   link   bibtex  
  undefined (1)
. . .
link   bibtex   9 downloads