generated by bibbase.org
  2024 (5)
Understanding the detrimental class-level effects of data augmentation. Kirichenko, P.; Ibrahim, M.; Balestriero, R.; Bouchacourt, D.; Vedantam, S. R.; Firooz, H.; and Wilson, A. G Advances in Neural Information Processing Systems, 36. 2024.
link   bibtex  
An Information Theory Perspective on Variance-Invariance-Covariance Regularization. Shwartz-Ziv, R.; Balestriero, R.; Kawaguchi, K.; Rudner, T. G.; and LeCun, Y. Advances in Neural Information Processing Systems, 36. 2024.
link   bibtex  
GPS-SSL: Guided Positive Sampling to Inject Prior Into Self-Supervised Learning. Feizi, A.; Balestriero, R.; Romero-Soriano, A.; and Rabbany, R. arXiv preprint arXiv:2401.01990. 2024.
link   bibtex  
Learning by Reconstruction Produces Uninformative Features For Perception. Balestriero, R.; and LeCun, Y. arXiv preprint arXiv:2402.11337. 2024.
link   bibtex  
Deep Networks Always Grok and Here is Why. Humayun, A. I.; Balestriero, R.; and Baraniuk, R. arXiv preprint arXiv:2402.15555. 2024.
link   bibtex  
  2023 (19)
Singular value perturbation and deep network optimization. Riedi, R. H; Balestriero, R.; and Baraniuk, R. G Constructive Approximation, 57(2): 807–852. 2023.
link   bibtex  
Rankme: Assessing the downstream performance of pretrained self-supervised representations by their rank. Garrido, Q.; Balestriero, R.; Najman, L.; and Lecun, Y. In International Conference on Machine Learning, pages 10929–10974, 2023. PMLR
link   bibtex  
POLICE: Provably optimal linear constraint enforcement for deep neural networks. Balestriero, R.; and LeCun, Y. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2023. IEEE
link   bibtex  
On minimal variations for unsupervised representation learning. Cabannes, V.; Bietti, A.; and Balestriero, R. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2023. IEEE
link   bibtex  
The ssl interplay: Augmentations, inductive bias, and generalization. Cabannes, V.; Kiani, B.; Balestriero, R.; LeCun, Y.; and Bietti, A. In International Conference on Machine Learning, pages 3252–3298, 2023. PMLR
link   bibtex  
Unsupervised Learning on a DIET: Datum IndEx as Target Free of Self-Supervision, Reconstruction, Projector Head. Balestriero, R. arXiv preprint arXiv:2302.10260. 2023.
link   bibtex  
Splinecam: Exact visualization and characterization of deep network geometry and decision boundaries. Humayun, A. I.; Balestriero, R.; Balakrishnan, G.; and Baraniuk, R. G In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3789–3798, 2023.
link   bibtex  
Fair-ensemble: When fairness naturally emerges from deep ensembling. Ko, W.; D'souza, D.; Nguyen, K.; Balestriero, R.; and Hooker, S. arXiv preprint arXiv:2303.00586. 2023.
link   bibtex  
Towards democratizing joint-embedding self-supervised learning. Bordes, F.; Balestriero, R.; and Vincent, P. arXiv preprint arXiv:2303.01986. 2023.
link   bibtex  
Understanding the class-specific effects of data augmentations. Kirichenko, P.; Balestriero, R.; Ibrahim, M.; Vedantam, S. R.; Firooz, H.; and Wilson, A. G. In ICLR 2023 Workshop on Pitfalls of limited data and computation for Trustworthy ML, 2023.
link   bibtex  
Active self-supervised learning: A few low-cost relationships are all you need. Cabannes, V.; Bottou, L.; Lecun, Y.; and Balestriero, R. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16274–16283, 2023.
link   bibtex  
A surprisingly simple technique to control the pretraining bias for better transfer: Expand or Narrow your representation. Bordes, F.; Lavoie, S.; Balestriero, R.; Ballas, N.; and Vincent, P. arXiv preprint arXiv:2304.05369. 2023.
link   bibtex  
A cookbook of self-supervised learning. Balestriero, R.; Ibrahim, M.; Sobal, V.; Morcos, A.; Shekhar, S.; Goldstein, T.; Bordes, F.; Bardes, A.; Mialon, G.; Tian, Y.; and others arXiv preprint arXiv:2304.12210. 2023.
link   bibtex  
Fast and exact enumeration of deep networks partitions regions. Balestriero, R.; and LeCun, Y. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2023. IEEE
link   bibtex  
Martian time-series unraveled: A multi-scale nested approach with factorial variational autoencoders. Siahkoohi, A.; Morel, R.; Balestriero, R.; Allys, E.; Sainton, G.; Kawamura, T.; and de Hoop, M. V arXiv preprint arXiv:2305.16189. 2023.
link   bibtex  
Provable Instance Specific Robustness via Linear Constraints. Humayun, A. I.; Casco-Rodriguez, J.; Balestriero, R.; and Baraniuk, R. In The Second Workshop on New Frontiers in Adversarial Machine Learning, 2023.
link   bibtex  
Training Dynamics of Deep Network Linear Regions. Humayun, A. I.; Balestriero, R.; and Baraniuk, R. arXiv preprint arXiv:2310.12977. 2023.
link   bibtex  
Characterizing large language model geometry solves toxicity detection and generation. Balestriero, R.; Cosentino, R.; and Shekkizhar, S. arXiv preprint arXiv:2312.01648. 2023.
link   bibtex  
Deep Network Partition Density Exhibits Double Descent. Humayun, A. I.; Balestriero, R.; and Baraniuk, R. . 2023.
link   bibtex  
  2022 (19)
Interpretable and learnable super-resolution time-frequency representation. Balestriero, R.; Glotin, H.; and Baranuik, R. In Mathematical and Scientific Machine Learning, pages 118–152, 2022. PMLR
link   bibtex  
No More Than 6ft Apart: Robust K-Means via Radius Upper Bounds. Humayun, A. I.; Balestriero, R.; Kyrillidis, A.; and Baraniuk, R. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4433–4437, 2022. IEEE
link   bibtex  
Spatial Transformer K-Means. Cosentino, R.; Balestriero, R.; Bahroun, Y.; Sengupta, A.; Baraniuk, R.; and Aazhang, B. In 2022 56th Asilomar Conference on Signals, Systems, and Computers, pages 1444–1448, 2022. IEEE
link   bibtex  
Neuroview-rnn: It’s about time. Barberan, C.; Alemmohammad, S.; Liu, N.; Balestriero, R.; and Baraniuk, R. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pages 1683–1697, 2022.
link   bibtex  
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values. Imtiaz Humayun, A.; Balestriero, R.; and Baraniuk, R. arXiv e-prints,arXiv–2203. 2022.
link   bibtex  
projUNN: efficient method for training deep networks with unitary matrices. Kiani, B.; Balestriero, R.; LeCun, Y.; and Lloyd, S. Advances in Neural Information Processing Systems, 35: 14448–14463. 2022.
link   bibtex  
The effects of regularization and data augmentation are class dependent. Balestriero, R.; Bottou, L.; and LeCun, Y. Advances in Neural Information Processing Systems, 35: 37878–37891. 2022.
link   bibtex  
Deeptensor: Low-rank tensor decomposition with deep network priors. Saragadam, V.; Balestriero, R.; Veeraraghavan, A.; and Baraniuk, R. G arXiv preprint arXiv:2204.03145. 2022.
link   bibtex   7 downloads  
Deephull: Fast convex hull approximation in high dimensions. Balestriero, R.; Wang, Z.; and Baraniuk, R. G In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3888–3892, 2022. IEEE
link   bibtex  
Contrastive and non-contrastive self-supervised learning recover global and local spectral embedding methods. Balestriero, R.; and LeCun, Y. Advances in Neural Information Processing Systems, 35: 26671–26685. 2022.
link   bibtex  
What do we maximize in self-supervised learning?. Shwartz-Ziv, R.; Balestriero, R.; and LeCun, Y. arXiv preprint arXiv:2207.10081. 2022.
link   bibtex  
Joint embedding self-supervised learning in the kernel regime. Kiani, B. T; Balestriero, R.; Chen, Y.; Lloyd, S.; and LeCun, Y. arXiv preprint arXiv:2209.14884. 2022.
link   bibtex  
Batch normalization explained. Balestriero, R.; and Baraniuk, R. G arXiv preprint arXiv:2209.14778. 2022.
link   bibtex  
Variance covariance regularization enforces pairwise independence in self-supervised representations. Mialon, G.; Balestriero, R.; and LeCun, Y. . 2022.
link   bibtex  
The hidden uniform cluster prior in self-supervised learning. Assran, M.; Balestriero, R.; Duval, Q.; Bordes, F.; Misra, I.; Bojanowski, P.; Vincent, P.; Rabbat, M.; and Ballas, N. arXiv preprint arXiv:2210.07277. 2022.
link   bibtex  
Imagenet-x: Understanding model mistakes with factor of variation annotations. Idrissi, B. Y.; Bouchacourt, D.; Balestriero, R.; Evtimov, I.; Hazirbas, C.; Ballas, N.; Vincent, P.; Drozdzal, M.; Lopez-Paz, D.; and Ibrahim, M. arXiv preprint arXiv:2211.01866. 2022.
link   bibtex  
Exact visualization of deep neural network geometry and decision boundary. Humayun, A. I.; Balestriero, R.; and Baraniuk, R. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022.
link   bibtex  
A data-augmentation is worth a thousand samples: Analytical moments and sampling-free training. Balestriero, R.; Misra, I.; and LeCun, Y. Advances in Neural Information Processing Systems, 35: 19631–19644. 2022.
link   bibtex  
Guillotine regularization: Why removing layers is needed to improve generalization in self-supervised learning. Bordes, F.; Balestriero, R.; Garrido, Q.; Bardes, A.; and Vincent, P. arXiv preprint arXiv:2206.13378. 2022.
link   bibtex  
  2021 (14)
Provable finite data generalization with group autoencoder. Cosentino, R.; Balestriero, R.; Baraniuk, R.; and Aazhang, B. In Mathematical and Scientific Machine Learning, 2021.
link   bibtex  
Wearing a mask: Compressed representations of variable-length sequences using recurrent neural tangent kernels. Alemohammad, S.; Babaei, H.; Balestriero, R.; Cheung, M. Y; Humayun, A. I.; LeJeune, D.; Liu, N.; Luzi, L.; Tan, J.; Wang, Z.; and others In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2950–2954, 2021. IEEE
link   bibtex  
Max-affine spline insights into deep network pruning. You, H.; Balestriero, R.; Lu, Z.; Kou, Y.; Shi, H.; Zhang, S.; Wu, S.; Lin, Y.; and Baraniuk, R. arXiv preprint arXiv:2101.02338. 2021.
link   bibtex  
Observing seismic signatures of slow slip events with unsupervised learning. Seydoux, L.; Campillo, M.; Steinmann, R.; Balestriero, R.; and de Hoop, M. In EGU General Assembly Conference Abstracts, pages EGU21–5603, 2021.
link   bibtex  
Fast Jacobian-vector product for deep networks. Balestriero, R.; and Baraniuk, R. arXiv preprint arXiv:2104.00219. 2021.
link   bibtex  
Max-Affine Splines Insights Into Deep Learning (PhD Thesis). Balestriero, R. Ph.D. Thesis, Rice University, 2021.
link   bibtex  
NeuroView: Explainable Deep Network Decision Making. Barberan, C.; Balestriero, R.; and Baraniuk, R. G arXiv preprint arXiv:2110.07778. 2021.
link   bibtex  
MaGNET: Uniform sampling from deep generative network manifolds without retraining. Humayun, A. I.; Balestriero, R.; and Baraniuk, R. In International Conference on Learning Representations, 2021.
link   bibtex  
Learning in high dimension always amounts to extrapolation. Balestriero, R.; Pesenti, J.; and LeCun, Y. arXiv preprint arXiv:2110.09485. 2021.
link   bibtex  
Anatomy of continuous Mars SEIS and pressure data from unsupervised learning. Barkaoui, S.; Lognonné, P.; Kawamura, T.; Stutzmann, É.; Seydoux, L.; de Hoop, M. V; Balestriero, R.; Scholz, J.; Sainton, G.; Plasman, M.; and others Bulletin of the Seismological Society of America, 111(6): 2964–2981. 2021.
link   bibtex  
Recurrent scattering network detects metastable behavior in polyphonic seismo-volcanic signals for volcano eruption forecasting. Rodrı́guez, Ángel Bueno; Balestriero, R.; De Angelis, S.; Benı́tez, M Carmen; Zuccarello, L.; Baraniuk, R.; Ibáñez, J. M; and de Hoop, M. V IEEE Transactions on Geoscience and Remote Sensing, 60: 1–23. 2021.
link   bibtex  
High fidelity visualization of what your self-supervised representation knows about. Bordes, F.; Balestriero, R.; and Vincent, P. arXiv preprint arXiv:2112.09164. 2021.
link   bibtex  
Learning the signature of slow-slip events and slow earthquakes from seismic and geodetic data. Seydoux, L.; Steinmann, R.; Campillo, M.; De Hoop, M.; and Balestriero, R. In AGU Fall Meeting Abstracts, volume 2021, pages S35C–0240, 2021.
link   bibtex  
Max-affine spline insights into deep network pruning. Balestriero, R.; You, H.; Lu, Z.; Kou, Y.; Shi, H.; Lin, Y.; and Baraniuk, R. . 2021.
link   bibtex  
  2020 (12)
Mad max: Affine spline insights into deep learning. Balestriero, R.; and Baraniuk, R. G Proceedings of the IEEE,1–24. 2020.
link   bibtex  
Max-affine spline insights into deep generative networks. Balestriero, R.; Paris, S.; and Baraniuk, R. arXiv preprint arXiv:2002.11912. 2020.
link   bibtex  
Symjax: symbolic cpu/gpu/tpu programming. Balestriero, R. arXiv preprint arXiv:2005.10635. 2020.
link   bibtex  
Analytical Probability Distributions and EM-Learning for Deep Generative Networks. Balestriero, R.; Paris, S.; and Baraniuk, R. G In Neural Information Processing Systems, volume 33, 2020.
link   bibtex  
The recurrent neural tangent kernel. Alemohammad, S.; Wang, Z.; Balestriero, R.; and Baraniuk, R. In International Conference on Learning Representations, 2020.
link   bibtex  
Ensembles of generative adversarial networks for disconnected data. Luzi, L.; Balestriero, R.; and Baraniuk, R. G arXiv preprint arXiv:2006.14600. 2020.
link   bibtex  
Universal frame thresholding. Cosentino, R.; Balestriero, R.; Baraniuk, R. G; and Aazhang, B. IEEE Signal Processing Letters, 27: 1115–1119. 2020.
link   bibtex  
Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Seydoux, L.; Balestriero, R.; Poli, P.; Hoop, M. d.; Campillo, M.; and Baraniuk, R. Nature communications, 11(1): 3972. 2020.
link   bibtex  
Scalable neural tangent kernel of recurrent architectures. Alemohammad, S.; Balestriero, R.; Wang, Z.; and Baraniuk, R. G arXiv preprint arXiv:2012.04859. 2020.
link   bibtex  
Sparse Multi-Family Deep Scattering Network. Cosentino, R.; and Balestriero, R. arXiv preprint arXiv:2012.07662. 2020.
link   bibtex  
Interpretable Image Clustering via Diffeomorphism-Aware K-Means. Cosentino, R.; Balestriero, R.; Bahroun, Y.; Sengupta, A.; Baraniuk, R.; and Aazhang, B. arXiv preprint arXiv:2012.09743. 2020.
link   bibtex  
Enhanced recurrent neural tangent kernels for non-time-series data. Alemohammad, S.; Balestriero, R.; Wang, Z.; and Baraniuk, R. arXiv preprint arXiv:2012.04859. 2020.
link   bibtex  
  2019 (5)
The geometry of deep networks: Power diagram subdivision. Balestriero, R.; Cosentino, R.; Aazhang, B.; and Baraniuk, R. In Advances in Neural Information Processing Systems, volume 32, pages 15832–15841, 2019.
link   bibtex  
Implicit rugosity regularization via data augmentation. LeJeune, D.; Balestriero, R.; Javadi, H.; and Baraniuk, R. G arXiv preprint arXiv:1905.11639. 2019.
link   bibtex  
Seismic signals and noises clustering with unsupervised deep representation learning. Seydoux, L.; Balestriero, R.; Poli, P.; De Hoop, M. V; Baraniuk, R.; and Campillo, M. In AGU Fall Meeting Abstracts, volume 2019, pages S52A–04, 2019.
link   bibtex  
Wavelet learning by adaptive hermite cubic splines applied to bioacoustic chirps. Balestriero, R.; and Glotin, H. In OCEANS 2019-Marseille, pages 1–5, 2019. IEEE
link   bibtex  
A GOODNESS OF FIT MEASURE FOR GENERATIVE NETWORKS. Luzi, L.; Balestriero, R.; and Baraniuk, R. . 2019.
link   bibtex  
  2018 (7)
Semi-supervised learning enabled by multiscale deep neural network inversion. Balestriero, R.; Glotin, H.; and Baraniuk, R. arXiv preprint arXiv:1802.10172. 2018.
link   bibtex  
A spline theory of deep learning. Balestriero, R.; and Baraniuk, R. In International Conference on Machine Learning, pages 374–383, 2018. PMLR
link   bibtex  
Spline filters for end-to-end deep learning. Balestriero, R.; Cosentino, R.; Glotin, H.; and Baraniuk, R. In International conference on machine learning, pages 364–373, 2018. PMLR
link   bibtex  
Deep learning for ethoacoustical mapping: application to a single Cachalot long term recording on joint observatories in Vancouver Island. Glotin, H.; Spong, P.; Symonds, H.; Roger, V.; Balestriero, R.; Ferrari, M.; Poupard, M.; Towers, J.; Veirs, S.; Marxer, R.; and others The Journal of the Acoustical Society of America, 144(3_Supplement): 1776–1777. 2018.
link   bibtex  
A max-affine spline perspective of recurrent neural networks. Wang, Z.; Balestriero, R.; and Baraniuk, R. In International Conference on Learning Representations, 2018.
link   bibtex  
From hard to soft: Understanding deep network nonlinearities via vector quantization and statistical inference. Balestriero, R.; and Baraniuk, R. G In International Conference on Learning Representations, 2018.
link   bibtex  
A spline theory of deep networks. Baraniuk, R. G; and Balestriero, R. In 35th International Conference on Machine Learning, ICML 2018, pages 646–660, 2018. International Machine Learning Society (IMLS)
link   bibtex  
  2017 (6)
Neural decision trees. Balestriero, R. arXiv preprint arXiv:1702.07360. 2017.
link   bibtex  
Linear time complexity deep Fourier scattering network and extension to nonlinear invariants. Balestriero, R.; and Glotin, H. arXiv preprint arXiv:1707.05841. 2017.
link   bibtex  
Fast chirplet transform injects priors in deep learning of animal calls and speech. Glotin, H.; Ricard, J.; and Balestriero, R. In International Conference on Learning Representations Workshop, 2017.
link   bibtex  
Multiscale Residual Mixture of PCA: Dynamic Dictionaries for Optimal Basis Learning. Balestriero, R. arXiv preprint arXiv:1707.05840. 2017.
link   bibtex  
Sparse Deep Scattering Croisé Network. Cosentino, R.; Balestriero, R.; Baraniuk, R.; and Patel, A. . 2017.
link   bibtex  
Adaptive Partitioning Spline Neural Networks: Template Matching, Memorization, Inhibitor Connections, Inversion, Semi-Sup, Topology Search,... Balestriero, R.; and Baraniuk, R. G Topology Search,..., arxiv, 1710. 2017.
link   bibtex  
  2016 (2)
Robust unsupervised transient detection with invariant representation based on the scattering network. Balestriero, R.; and Aazhang, B. arXiv preprint arXiv:1611.07850. 2016.
link   bibtex  
Best basis selection using sparsity driven multi-family wavelet transform. Cosentino, R.; Balestriero, R.; and Aazhang, B. In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 252–256, 2016. IEEE
link   bibtex  
  2015 (2)
Enhanced feature extraction using the morlet transform on 1 mhz recordings reveals the complex nature of amazon river dolphin (inia geoffrensis) clicks. Trone, M.; Glotin, H.; Balestriero, R.; and Bonnett, D. E The Journal of the Acoustical Society of America, 138(3_Supplement): 1904–1904. 2015.
link   bibtex  
Scattering decomposition for massive signal classification: from theory to fast algorithm and implementation with validation on international bioacoustic benchmark. Balestriero, R.; and Glotin, H. In 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 753–761, 2015. IEEE
link   bibtex  
  2014 (2)
All clicks are not created equally: Variations in high-frequency acoustic signal parameters of the Amazon river dolphin (Inia geoffrensis). Trone, M.; Balestriero, R.; Glotin, H.; and David, B. E The Journal of the Acoustical Society of America, 136(4_Supplement): 2217–2217. 2014.
link   bibtex  
Heterogeneity of Amazon River dolphin high-frequency clicks: Current Odontoceti bioacoustic terminology in need of standardization. Trone, M.; Glotin, H.; Balestriero, R.; Bonnett, D. E; and Blakefield, J. In Proceedings of Meetings on Acoustics, volume 22, 2014. AIP Publishing
link   bibtex  
  2013 (1)
Gabor scalogram extracts dolphin click formants. Trone, M.; Balestriero, R.; and Glotin, H. In Proc. 1st workshop Neural Information Processing Scaled for Bioacoustics-from neurons to Big Data-NIPS4B. NIPS4B, 2013.
link   bibtex  
  undefined (7)
Optimal Binary Classifier Hierarchy for Large Scale Regression Problems with Validation on Stock Market Volumes Forecasting. BALESTRIERO, R. . .
link   bibtex  
FAST CHIRPLET TRANSFORM ENHANCES CNN-BASED AUDIO CLASSIFIER ON SMALL DATA. Glotin, H.; La Garde, F.; Ricard, J.; and Balestriero, R. . .
link   bibtex  
Deep Q-Network Research Project. Balestriero, R.; and Cosentino, R. . .
link   bibtex  
GPU Implementation of Probabilistic Mixture Models for High Dimensional Dataset. COSENTINO, R.; and BALESTRIERO, R. . .
link   bibtex  
6.1 Gabor Scalogram Reveals Formants in High-Frequency Dolphin Clicks. Trone, M.; Balestriero, R.; and Glotin, H. . .
link   bibtex  
FAIR-Ensemble: Homogeneous Deep Ensembling Naturally Attenuates Disparate Group Performances. Ko, W.; D'souza, D.; Nguyen, K.; Balestriero, R.; and Hooker, S. . .
link   bibtex  
Scaling Vision-Language Models Does Not Improve Relational Understanding: The Right Learning Objective Helps. Al-Tahan, H.; Garrido, Q.; Balestriero, R.; Bouchacourt, D.; Hazirbas, C.; Ibrahim, M.; and FAIR, M. . .
link   bibtex