Provable finite data generalization with group autoencoder.
Cosentino, R.; Balestriero, R.; Baraniuk, R.; and Aazhang, B.
In
Mathematical and Scientific Machine Learning, 2021.
link
bibtex
@inproceedings{cosentino2021provable,
title={Provable finite data generalization with group autoencoder},
author={Cosentino, Romain and Balestriero, Randall and Baraniuk, Richard and Aazhang, Behnaam},
booktitle={Mathematical and Scientific Machine Learning},
year={2021}
}
Wearing a mask: Compressed representations of variable-length sequences using recurrent neural tangent kernels.
Alemohammad, S.; Babaei, H.; Balestriero, R.; Cheung, M. Y; Humayun, A. I.; LeJeune, D.; Liu, N.; Luzi, L.; Tan, J.; Wang, Z.; and others
In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2950–2954, 2021. IEEE
link
bibtex
@inproceedings{alemohammad2021wearing,
title={Wearing a mask: Compressed representations of variable-length sequences using recurrent neural tangent kernels},
author={Alemohammad, Sina and Babaei, Hossein and Balestriero, Randall and Cheung, Matt Y and Humayun, Ahmed Imtiaz and LeJeune, Daniel and Liu, Naiming and Luzi, Lorenzo and Tan, Jasper and Wang, Zichao and others},
booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={2950--2954},
year={2021},
organization={IEEE}
}
Max-affine spline insights into deep network pruning.
You, H.; Balestriero, R.; Lu, Z.; Kou, Y.; Shi, H.; Zhang, S.; Wu, S.; Lin, Y.; and Baraniuk, R.
arXiv preprint arXiv:2101.02338. 2021.
link
bibtex
@article{you2021max,
title={Max-affine spline insights into deep network pruning},
author={You, Haoran and Balestriero, Randall and Lu, Zhihan and Kou, Yutong and Shi, Huihong and Zhang, Shunyao and Wu, Shang and Lin, Yingyan and Baraniuk, Richard},
journal={arXiv preprint arXiv:2101.02338},
year={2021}
}
Observing seismic signatures of slow slip events with unsupervised learning.
Seydoux, L.; Campillo, M.; Steinmann, R.; Balestriero, R.; and de Hoop, M.
In
EGU General Assembly Conference Abstracts, pages EGU21–5603, 2021.
link
bibtex
@inproceedings{seydoux2021observing,
title={Observing seismic signatures of slow slip events with unsupervised learning},
author={Seydoux, Leonard and Campillo, Michel and Steinmann, Ren{\'e} and Balestriero, Randall and de Hoop, Maarten},
booktitle={EGU General Assembly Conference Abstracts},
pages={EGU21--5603},
year={2021}
}
Fast Jacobian-vector product for deep networks.
Balestriero, R.; and Baraniuk, R.
arXiv preprint arXiv:2104.00219. 2021.
link
bibtex
@article{balestriero2021fast,
title={Fast Jacobian-vector product for deep networks},
author={Balestriero, Randall and Baraniuk, Richard},
journal={arXiv preprint arXiv:2104.00219},
year={2021}
}
Max-Affine Splines Insights Into Deep Learning (PhD Thesis).
Balestriero, R.
Ph.D. Thesis, Rice University, 2021.
link
bibtex
@phdthesis{balestriero2021max,
title={Max-Affine Splines Insights Into Deep Learning (PhD Thesis)},
author={Balestriero, Randall},
year={2021},
school={Rice University}
}
NeuroView: Explainable Deep Network Decision Making.
Barberan, C.; Balestriero, R.; and Baraniuk, R. G
arXiv preprint arXiv:2110.07778. 2021.
link
bibtex
@article{barberan2021neuroview,
title={NeuroView: Explainable Deep Network Decision Making},
author={Barberan, CJ and Balestriero, Randall and Baraniuk, Richard G},
journal={arXiv preprint arXiv:2110.07778},
year={2021}
}
Anatomy of continuous Mars SEIS and pressure data from unsupervised learning.
Barkaoui, S.; Lognonné, P.; Kawamura, T.; Stutzmann, É.; Seydoux, L.; de Hoop, M. V; Balestriero, R.; Scholz, J.; Sainton, G.; Plasman, M.; and others
Bulletin of the Seismological Society of America, 111(6): 2964–2981. 2021.
link
bibtex
@article{barkaoui2021anatomy,
title={Anatomy of continuous Mars SEIS and pressure data from unsupervised learning},
author={Barkaoui, Salma and Lognonn{\'e}, Philippe and Kawamura, Taichi and Stutzmann, {\'E}l{\'e}onore and Seydoux, L{\'e}onard and de Hoop, Maarten V and Balestriero, Randall and Scholz, John-Robert and Sainton, Gr{\'e}gory and Plasman, Matthieu and others},
journal={Bulletin of the Seismological Society of America},
volume={111},
number={6},
pages={2964--2981},
year={2021},
publisher={Seismological Society of America}
}
High fidelity visualization of what your self-supervised representation knows about.
Bordes, F.; Balestriero, R.; and Vincent, P.
arXiv preprint arXiv:2112.09164. 2021.
link
bibtex
@article{bordes2021high,
title={High fidelity visualization of what your self-supervised representation knows about},
author={Bordes, Florian and Balestriero, Randall and Vincent, Pascal},
journal={arXiv preprint arXiv:2112.09164},
year={2021}
}
Learning the signature of slow-slip events and slow earthquakes from seismic and geodetic data.
Seydoux, L.; Steinmann, R.; Campillo, M.; De Hoop, M.; and Balestriero, R.
In
AGU Fall Meeting Abstracts, volume 2021, pages S35C–0240, 2021.
link
bibtex
@inproceedings{seydoux2021learning,
title={Learning the signature of slow-slip events and slow earthquakes from seismic and geodetic data},
author={Seydoux, Leonard and Steinmann, Rene and Campillo, Michel and De Hoop, Maarten and Balestriero, Randall},
booktitle={AGU Fall Meeting Abstracts},
volume={2021},
pages={S35C--0240},
year={2021}
}
Max-affine spline insights into deep network pruning.
Balestriero, R.; You, H.; Lu, Z.; Kou, Y.; Shi, H.; Lin, Y.; and Baraniuk, R.
. 2021.
link
bibtex
@article{balestriero2021max,
title={Max-affine spline insights into deep network pruning},
author={Balestriero, Randall and You, Haoran and Lu, Zhihan and Kou, Yutong and Shi, Huihong and Lin, Yingyan and Baraniuk, Richard},
year={2021}
}