generated by bibbase.org
  2025 (1)
Bacillus velezensis S141 improves the root growth of soybean under drought conditions. Kondo, T.; Sibponkrung, S.; Tittabutr, P.; Boonkerd, N.; Ishikawa, S.; Teaumroong, N.; and Yoshida, K. Bioscience, Biotechnology, and Biochemistry, 89(2): 304–312. 2025.
link   bibtex  
  2024 (5)
High-throughput evaluation of hemolytic activity through precise measurement of colony and hemolytic zone sizes of engineered Bacillus subtilis on blood agar. Bamba, T.; Aoki, R.; Hori, Y.; Ishikawa, S.; Yoshida, K.; Taoka, N.; Kobayashi, S.; Yasueda, H.; Kondo, A.; and Hasunuma, T. Biology Methods and Protocols, 9(1): bpae044. 2024.
link   bibtex  
Efficient pathway-driven scyllo-inositol production from myo-inositol using thermophilic cells and mesophilic inositol dehydrogenases: a novel strategy for pathway control. Kurashiki, R.; Takahashi, M.; Okumura, Y.; Ono, T.; Endo, H.; Makino, K.; Fukui, K.; Yokoyama, K.; Ishikawa, S.; Yoshida, K.; and others Applied and Environmental Microbiology, 90(7): e00281–24. 2024.
link   bibtex  
GeF-seq: A Simple Procedure for Base-Pair Resolution ChIP-seq. Chumsakul, O.; Nakamura, K.; Fukamachi, K.; Ishikawa, S.; and Oshima, T. In Bacterial Chromatin: Methods and Protocols, pages 39–53. Springer US New York, NY, 2024.
link   bibtex  
Bacillus subtilis grown in a “breathing” vessel without sparger aeration. Yoshida, K.; Yokoyama, K.; Öktem, A.; Ishikawa, S.; van Dijl, J. M.; Yotsuya, M.; and Sato, R. Bioscience, Biotechnology, and Biochemistry, 88(11): 1389–1393. 2024.
link   bibtex  
Screening to isolate Bacillus subtilis mutants with enhanced NADPH levels. Wu, Y.; Ishikawa, S.; and Yoshida, K. The Journal of general and applied microbiology. 2024.
link   bibtex  
  2023 (4)
A critical role of the periplasm in copper homeostasis in Gram-negative bacteria. Ishihara, J.; Mekubo, T.; Kusaka, C.; Kondo, S.; Oiko, R.; Igarashi, K.; Aiba, H.; Ishikawa, S.; Ogasawara, N.; Oshima, T.; and others Biosystems, 231: 104980. 2023.
link   bibtex  
Bacillus velezensis S141, a soybean growth-promoting bacterium, hydrolyzes isoflavone glycosides into aglycones. Kondo, T.; Sibponkrung, S.; Hironao, K.; Tittabutr, P.; Boonkerd, N.; Ishikawa, S.; Ashida, H.; Teaumroong, N.; and Yoshida, K. The Journal of General and Applied Microbiology, 69(3): 175–183. 2023.
link   bibtex  
Genes encoding a novel thermostable bacteriocin in the thermophilic bacterium Aeribacillus pallidus PI8. Kita, K.; Yoshida, S.; Masuo, S.; Nakamura, A.; Ishikawa, S.; and Yoshida, K. Journal of Applied Microbiology, 134(12): lxad293. 2023.
link   bibtex  
Bacterial and fungal bioburden reduction on material surfaces using various sterilization techniques suitable for spacecraft decontamination. Kimura, S.; Ishikawa, S.; Hayashi, N.; Fujita, K.; Inatomi, Y.; and Suzuki, S. Frontiers in Microbiology, 14: 1253436. 2023.
link   bibtex  
  2022 (5)
A novel method for transforming Geobacillus kaustophilus with a chromosomal segment of Bacillus subtilis transferred via pLS20-dependent conjugation. Mori, K.; Fukui, K.; Amatsu, R.; Ishikawa, S.; Verrone, V.; Wipat, A.; Meijer, W. J.; and Yoshida, K. Microbial Cell Factories, 21(1): 34. 2022.
link   bibtex  
Functional analysis of a gene cluster for putative bacteriocin deduced from the genome sequence of Aeribacillus pallidus PI8. Kita, K.; Yoshida, S.; Ishikawa, S.; and Yoshida, K. The Journal of General and Applied Microbiology, 68(2): 87–94. 2022.
link   bibtex  
Constitutive expression of the global regulator AbrB restores the growth defect of a genome-reduced Bacillus subtilis strain and improves its metabolite production. Yamamoto, J.; Chumsakul, O.; Toya, Y.; Morimoto, T.; Liu, S.; Masuda, K.; Kageyama, Y.; Hirasawa, T.; Matsuda, F.; Ogasawara, N.; and others DNA Research, 29(3): dsac015. 2022.
link   bibtex  
A New Tool for the Flexible Genetic Manipulation of Geobacillus kaustophilus. Amatsu, R.; Mori, K.; Ishikawa, S.; Meijer, W. J.; and Yoshida, K. Bio-protocol, 12(17): e4502–e4502. 2022.
link   bibtex  
Constitutive glucose dehydrogenase elevates intracellular NADPH levels and luciferase luminescence in Bacillus subtilis. Wu, Y.; Kawabata, H.; Kita, K.; Ishikawa, S.; Tanaka, K.; and Yoshida, K. Microbial Cell Factories, 21(1): 266. 2022.
link   bibtex  
  2021 (4)
Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. Yoshida, K.; Shirae, Y.; Nishimura, R.; Fukui, K.; and Ishikawa, S. Microbiology, 167(1): 001008. 2021.
link   bibtex  
Genome sequences of two strains of Lactococcus lactis subsp. cremoris with the same ancestry but different capacity to produce exopolysaccharides. Gotoh, Y.; and Yoshida, K J. Gen. Appl. Microbiol.. 2021.
link   bibtex  
Identification of genes encoding a novel ABC transporter in Lactobacillus delbrueckii for inulin polymers uptake. Tsujikawa, Y.; Ishikawa, S.; Sakane, I.; Yoshida, K.; and Osawa, R. Scientific Reports, 11(1): 16007. 2021.
link   bibtex  
Assessment of Bacillus subtilis plasmid pLS20 conjugation in the absence of quorum sensing repression. Mori, K.; Verrone, V.; Amatsu, R.; Fukui, K.; Meijer, W. J.; Ishikawa, S.; Wipat, A.; and Yoshida, K. Microorganisms, 9(9): 1931. 2021.
link   bibtex  
  2020 (4)
A bacterial cell factory converting glucose into scyllo-inositol, a therapeutic agent for Alzheimer’s disease. Michon, C.; Kang, C.; Karpenko, S.; Tanaka, K.; Ishikawa, S.; and Yoshida, K. Communications Biology, 3(1): 93. 2020.
link   bibtex  
Complete genome sequence of thermophilic bacterium Aeribacillus pallidus PI8. Kita, K.; Ishida, A.; Tanaka, K.; Ishikawa, S.; and Yoshida, K. Microbiology resource announcements, 9(17): 10–1128. 2020.
link   bibtex  
Complete Genome Sequence of Nitrogen-Fixing Paenibacillus sp. Strain URB8-2, Isolated from the Rhizosphere of Wild Grass. Kita, K.; Ishikawa, S.; and Yoshida, K. Microbiology Resource Announcements, 9(36): 10–1128. 2020.
link   bibtex  
Complete genome sequence of nitrogen-fixing Paenibacillus sp. strain URB8-2, isolated from the rhizosphere of wild grass. Microbiol Resour Announc 9: e00814-20. Kita, K; Ishikawa, S; and Yoshida, K. 2020.
link   bibtex  
  2019 (1)
Production of scyllo-Inositol: conversion of rice bran into a promising disease-modifying therapeutic agent for Alzheimer’s disease. Yoshida, K.; and Ishikawa, S. Journal of nutritional science and vitaminology, 65(Supplement): S139–S142. 2019.
link   bibtex  
  2018 (4)
Rapid conjugative mobilization of a 100 kb segment of Bacillus subtilis chromosomal DNA is mediated by a helper plasmid with no ability for self-transfer. Miyano, M.; Tanaka, K.; Ishikawa, S.; Takenaka, S.; Miguel-Arribas, A.; Meijer, W. J.; and Yoshida, K. Microbial cell factories, 17(1): 13. 2018.
link   bibtex  
A novel method for transforming the thermophilic bacterium Geobacillus kaustophilus. Miyano, M.; Tanaka, K.; Ishikawa, S.; Mori, K.; Miguel-Arribas, A.; Meijer, W. J.; and Yoshida, K. Microbial Cell Factories, 17(1): 127. 2018.
link   bibtex  
GeF-seq: A simple procedure for base pair resolution ChIP-seq. Chumsakul, O.; Nakamura, K.; Ishikawa, S.; and Oshima, T. In Bacterial Chromatin: Methods and Protocols, pages 33–47. Springer New York New York, NY, 2018.
link   bibtex  
Bradyrhizobium diazoefficiens USDA110 PhaR functions for pleiotropic regulation of cellular processes besides PHB accumulation. Nishihata, S.; Kondo, T.; Tanaka, K.; Ishikawa, S.; Takenaka, S.; Kang, C.; and Yoshida, K. BMC microbiology, 18(1): 156. 2018.
link   bibtex  
  2017 (5)
Bacillus subtilis iolU encodes an additional NADP+-dependent scyllo-inositol dehydrogenase. Kang, D.; Tanaka, K.; Takenaka, S.; Ishikawa, S.; and Yoshida, K. Bioscience, Biotechnology, and Biochemistry, 81(5): 1026–1032. 2017.
link   bibtex  
A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Tanaka, K.; Natsume, A.; Ishikawa, S.; Takenaka, S.; and Yoshida, K. Microbial cell factories, 16(1): 67. 2017.
link   bibtex  
Genome-wide analysis of ResD, NsrR, and Fur binding in Bacillus subtilis during anaerobic fermentative growth by in vivo footprinting. Chumsakul, O.; Anantsri, D. P; Quirke, T.; Oshima, T.; Nakamura, K.; Ishikawa, S.; and Nakano, M. M Journal of bacteriology, 199(13): 10–1128. 2017.
link   bibtex  
Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD+-dependent scyllo-inositol dehydrogenase. Kang, D.; Michon, C.; Morinaga, T.; Tanaka, K.; Takenaka, S.; Ishikawa, S.; and Yoshida, K. BMC microbiology, 17(1): 154. 2017.
link   bibtex  
Bacillus subtilis cell factory converting phytic acid into scyllo-inositol, a therapeutic agent for Alzheimer's disease. Yoshida, K.; Tanaka, K.; and Ishikawa, S. . 2017.
link   bibtex  
  2016 (3)
H-NS facilitates sequence diversification of horizontally transferred DNAs during their integration in host chromosomes. Higashi, K.; Tobe, T.; Kanai, A.; Uyar, E.; Ishikawa, S.; Suzuki, Y.; Ogasawara, N.; Kurokawa, K.; and Oshima, T. PLoS Genetics, 12(1): e1005796. 2016.
link   bibtex  
Bacillus subtilis 5′-nucleotidases with various functions and substrate specificities. Terakawa, A.; Natsume, A.; Okada, A.; Nishihata, S.; Kuse, J.; Tanaka, K.; Takenaka, S.; Ishikawa, S.; and Yoshida, K. BMC microbiology, 16(1): 249. 2016.
link   bibtex  
Replication fork progression is paused in two large chromosomal zones flanking the DNA replication origin in Escherichia coli. Akiyama, M. T.; Oshima, T.; Chumsakul, O.; Ishikawa, S.; and Maki, H. Genes to Cells, 21(8): 907–914. 2016.
link   bibtex  
  2015 (5)
Cloning and heterologous expression of the ftfCNC-2 (1) gene from Weissella confusa MBFCNC-2 (1) as an extracellular active fructansucrase in Bacillus subtilis. Malik, A.; Hapsari, M. T.; Ohtsu, I.; Ishikawa, S.; and Takagi, H. Journal of bioscience and bioengineering, 119(5): 515–520. 2015.
link   bibtex  
Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. Tanaka, K.; Iwasaki, K.; Morimoto, T.; Matsuse, T.; Hasunuma, T.; Takenaka, S.; Chumsakul, O.; Ishikawa, S.; Ogasawara, N.; and Yoshida, K. BMC microbiology, 15(1): 43. 2015.
link   bibtex  
Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis. Toya, Y.; Hirasawa, T.; Ishikawa, S.; Chumsakul, O.; Morimoto, T.; Liu, S.; Masuda, K.; Kageyama, Y.; Ozaki, K.; Ogasawara, N.; and others Bioscience, biotechnology, and biochemistry, 79(12): 2073–2080. 2015.
link   bibtex  
The role of $α$-CTD in the genome-wide transcriptional regulation of the Bacillus subtilis cells. Murayama, S.; Ishikawa, S.; Chumsakul, O.; Ogasawara, N.; and Oshima, T. PloS one, 10(7): e0131588. 2015.
link   bibtex  
Hygiene management in food factory and human resource development (6): basics and application of sterilization by washing. Tsurumi, M; and Ishikawa, S . 2015.
link   bibtex  
  2014 (1)
The ResD response regulator, through functional interaction with NsrR and fur, plays three distinct roles in Bacillus subtilis transcriptional control. Henares, B.; Kommineni, S.; Chumsakul, O.; Ogasawara, N.; Ishikawa, S.; and Nakano, M. M Journal of bacteriology, 196(2): 493–503. 2014.
link   bibtex  
  2013 (5)
Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli. Ueda, T.; Takahashi, H.; Uyar, E.; Ishikawa, S.; Ogasawara, N.; and Oshima, T. DNA research, 20(3): 263–271. 2013.
link   bibtex  
Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Duman, R.; Ishikawa, S.; Celik, I.; Strahl, H.; Ogasawara, N.; Troc, P.; Löwe, J.; and Hamoen, L. W Proceedings of the National Academy of Sciences, 110(48): E4601–E4610. 2013.
link   bibtex  
Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis. Lei, Y.; Oshima, T.; Ogasawara, N.; and Ishikawa, S. Journal of bacteriology, 195(8): 1697–1705. 2013.
link   bibtex  
High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq. Chumsakul, O.; Nakamura, K.; Kurata, T.; Sakamoto, T.; Hobman, J. L; Ogasawara, N.; Oshima, T.; and Ishikawa, S. DNA research, 20(4): 325–338. 2013.
link   bibtex  
Efficient Expression of Recombinant Soluble Apoptin in Escherichia coli and Bacillus subtilis. IK, S. M S.; Prasetyo, A.; Onuma, C; Ishikawa, S; Malik, A; and Ogasawara, N International Journal of Chemical, Environmental & Biological Sciences, 1(1): 2320–4087. 2013.
link   bibtex  
  2012 (1)
Regulation of chromosomal replication initiation by oriC-proximal DnaA-box clusters in Bacillus subtilis. Okumura, H.; Yoshimura, M.; Ueki, M.; Oshima, T.; Ogasawara, N.; and Ishikawa, S. Nucleic acids research, 40(1): 220–234. 2012.
link   bibtex  
  2011 (5)
Sequence-specific error profile of Illumina sequencers. Nakamura, K.; Oshima, T.; Morimoto, T.; Ikeda, S.; Yoshikawa, H.; Shiwa, Y.; Ishikawa, S.; Linak, M. C; Hirai, A.; Takahashi, H.; and others Nucleic acids research, 39(13): e90–e90. 2011.
link   bibtex  
A widespread family of bacterial cell wall assembly proteins. Kawai, Y.; Marles-Wright, J.; Cleverley, R. M; Emmins, R.; Ishikawa, S.; Kuwano, M.; Heinz, N.; Bui, N. K.; Hoyland, C. N; Ogasawara, N.; and others The EMBO journal, 30(24): 4931–4941. 2011.
link   bibtex  
Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Chumsakul, O.; Takahashi, H.; Oshima, T.; Hishimoto, T.; Kanaya, S.; Ogasawara, N.; and Ishikawa, S. Nucleic acids research, 39(2): 414–428. 2011.
link   bibtex  
Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. Kusuya, Y.; Kurokawa, K.; Ishikawa, S.; Ogasawara, N.; and Oshima, T. Journal of bacteriology, 193(12): 3090–3099. 2011.
link   bibtex  
Screening for sucrose phosphorylase in exopolysaccharide producing-lactic acid bacteria reveals SPaseWRS-3 (1) in Leuconostoc mesenteroides isolated from sugar containing- beverage" Wedang Ronde" from Indonesia. Malik, A.; Ishikawa, S.; Sahlan, M.; Ogasawara, N.; Nguyen, U. Q.; and Suryadi, H. African Journal of Biotechnology, 10(74): 16915–16923. 2011.
link   bibtex  
  2010 (1)
RNA polymerase trafficking in Bacillus subtilis cells. Ishikawa, S.; Oshima, T.; Kurokawa, K.; Kusuya, Y.; and Ogasawara, N. Journal of bacteriology, 192(21): 5778–5787. 2010.
link   bibtex  
  2009 (2)
Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. Wu, L. J.; Ishikawa, S.; Kawai, Y.; Oshima, T.; Ogasawara, N.; and Errington, J. The EMBO journal, 28(13): 1940–1952. 2009.
link   bibtex  
Differential binding profiles of StpA in wild-type and hns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. Uyar, E.; Kurokawa, K.; Yoshimura, M.; Ishikawa, S.; Ogasawara, N.; and Oshima, T. Journal of bacteriology, 191(7): 2388–2391. 2009.
link   bibtex  
  2008 (2)
The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtils. Cho, E.; Ogasawara, N.; and Ishikawa, S. Genes & genetic systems, 83(2): 111–125. 2008.
link   bibtex  
Molecular mechanism of bacterial cell division. Ishikawa, S.; and Ogasawara, N. Tanpakushitsu Kakusan koso. Protein, Nucleic Acid, Enzyme, 53(13): 1725–1731. 2008.
link   bibtex  
  2007 (2)
Distribution of stable DnaA-binding sites on the Bacillus subtilis genome detected using a modified ChIP-chip method. Ishikawa, S.; Ogura, Y.; Yoshimura, M.; Okumura, H.; Cho, E.; Kawai, Y.; Kurokawa, K.; Oshima, T.; and Ogasawara, N. DNA research, 14(4): 155–168. 2007.
link   bibtex  
Amphibacillus sediminis sp. nov., an endospore-forming bacterium isolated from lake sediment in Japan. An, S.; Ishikawa, S.; Kasai, H.; Goto, K.; and Yokota, A. International journal of systematic and evolutionary microbiology, 57(11): 2489–2492. 2007.
link   bibtex  
  2006 (2)
Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. Oshima, T.; Ishikawa, S.; Kurokawa, K.; Aiba, H.; and Ogasawara, N. DNA research, 13(4): 141–153. 2006.
link   bibtex  
A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Ishikawa, S.; Kawai, Y.; Hiramatsu, K.; Kuwano, M.; and Ogasawara, N. Molecular microbiology, 60(6): 1364–1380. 2006.
link   bibtex  
  2005 (1)
Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. Bongiorni, C.; Ishikawa, S.; Stephenson, S.; Ogasawara, N.; and Perego, M. Journal of bacteriology, 187(13): 4353–4361. 2005.
link   bibtex  
  2003 (1)
Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. Fukushima, T.; Ishikawa, S.; Yamamoto, H.; Ogasawara, N.; and Sekiguchi, J. Journal of biochemistry, 133(4): 475–483. 2003.
link   bibtex  
  2002 (2)
Biochemical characterization of aspartyl phosphate phosphatase interaction with a phosphorylated response regulator and its inhibition by a pentapeptide. Ishikawa, S.; Core, L.; and Perego, M. Journal of Biological Chemistry, 277(23): 20483–20489. 2002.
link   bibtex  
Production of long-chain levan by a sacC insertional mutant from Bacillus subtilis 327UH. Shida, T.; Mukaijo, K.; Ishikawa, S.; Yamamoto, H.; and Sekiguchi, J. Bioscience, biotechnology, and biochemistry, 66(7): 1555–1558. 2002.
link   bibtex  
  2001 (1)
A free terminal carboxylate group is required for PhrA pentapeptide inhibition of RapA phosphatase. Core, L. J; Ishikawa, S.; and Perego, M. Peptides, 22(10): 1549–1553. 2001.
link   bibtex  
  1999 (3)
Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. Ohnishi, R.; Ishikawa, S.; and Sekiguchi, J. Journal of bacteriology, 181(10): 3178–3184. 1999.
link   bibtex  
Cloning and expression of two autolysin genes, cwlU and cwlV, which are tandemly arranged on the chromosome of Bacillus polymyxa var. colistinus. Ishikawa, S; Kawahara, S; and Sekiguchi, J Molecular and General Genetics MGG, 262(4): 738–748. 1999.
link   bibtex  
Formation, structure and germination of the spore of Bacillus subtilis. Sekiguchi, J; Sato, T; Nanamiya, H; Ohashi, Y; Kawamura, F; Takamatsu, H; Kodama, T; Watabe, K; and Ishikawa, S Tanpakushitsu Kakusan koso. Protein, Nucleic Acid, Enzyme, 44(10): 1460–1466. 1999.
link   bibtex  
  1998 (2)
Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. Ishikawa, S.; Yamane, K.; and Sekiguchi, J. Journal of Bacteriology, 180(6): 1375–1380. 1998.
link   bibtex  
Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. Ishikawa, S.; Hara, Y.; Ohnishi, R.; and Sekiguchi, J. Journal of bacteriology, 180(9): 2549–2555. 1998.
link   bibtex  
  1997 (1)
Purification and characterization of an autolysin of Bacillus polymyxa var. colistinus which is most active at acidic pH. Kawahara, S.; Utsunomiya, C.; Ishikawa, S.; and Sekiguchi, J. Journal of fermentation and bioengineering, 83(5): 419–422. 1997.
link   bibtex  
  1993 (1)
Resin Composition for Composite Vibration Damping Material and Composite Vibration Damping Material Produced Therefrom. Yamamoto, H; Ishikawa, S; Taniguchi, Y; Endo, H; and Kadowaki, N Patent NumberEP 0554449. 1993.
link   bibtex  
  1974 (1)
DETERMINATION OF BENDING LIMIT BY FRACTURE STRESS UNDER TENSILE UNBENDING. A TRIAL FOR NEW TESTING METHOD OF BENDING. Yoshida, K; Ike, H; and Ishikawa, S . 1974.
link   bibtex