generated by bibbase.org
  2019 (2)
Graph Clustering for Quality Event Detectors in a Large Water Distribution Network. Ennouri, O.; Cheifetz, N.; Mandel, P.; Féliers, C.; and Heim, V. In MARAMI 2019: The 10th Conference on Network Modeling and Analysis, Dijon, FR, November 2019.
Graph Clustering for Quality Event Detectors in a Large Water Distribution Network [link]Paper   link   bibtex  
Water level short-term forecasting using statistical approaches: a case study on the Parisian region. Cheifetz, N.; Senetaire, H.; Féliers, C.; and Heim, V. In SimHydro 2019: Which models for extreme situations and crisis management?, Sophia Antipolis, FR, June 2019.
Water level short-term forecasting using statistical approaches: a case study on the Parisian region [link]Paper   link   bibtex  
  2018 (3)
Forecasting pollutant concentration in river to protect drinking water production. Cheifetz, N.; Laradi, M.; Fauchon, N.; Thouvenel, F.; Féliers, C.; and Heim, V. In 1st International WDSA/CCWI 2018 Joint Conference, Kingston, CA, July 2018.
Forecasting pollutant concentration in river to protect drinking water production [link]Paper   link   bibtex  
A comparative study of multi-objective methods for sensor placement optimization applied on realistic WDN. Cheifetz, N.; Ramos-Castillo, M.; Mandel, P.; Féliers, C.; and Heim, V. In 1st International WDSA/CCWI 2018 Joint Conference, Kingston, CA, July 2018.
A comparative study of multi-objective methods for sensor placement optimization applied on realistic WDN [link]Paper   link   bibtex  
Mixture of Non-homogeneous Hidden Markov Models for Clustering and Prediction of Water Consumption Time Series. Leyli Abadi, M.; Samé, A.; Oukhellou, L.; Cheifetz, N.; Mandel, P.; Féliers, C.; and Chesneau, O. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–8, July 2018. IEEE
Mixture of Non-homogeneous Hidden Markov Models for Clustering and Prediction of Water Consumption Time Series [link]Paper   link   bibtex  
  2017 (6)
Predictive classification of water consumption time series using non-homogeneous markov models. Leyli Abadi, M.; Samé, A.; Oukhellou, L.; Cheifetz, N.; Mandel, P.; Féliers, C.; and Chesneau, O. In 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pages 323–331, October 2017. IEEE
Predictive classification of water consumption time series using non-homogeneous markov models [link]Paper   link   bibtex  
Extracting Urban Water Usage Habits from Smart Meter Data: a Functional Clustering Approach. Cheifetz, N.; Same, A.; Noumir, Z.; Sandraz, A. C.; Féliers, C.; and Heim, V. In ESANN 2017, European Symposium on Artificial Neural Networks, Bruges, BE, April 2017.
Extracting Urban Water Usage Habits from Smart Meter Data: a Functional Clustering Approach [pdf]Paper   link   bibtex  
Un algorithme glouton pour le positionnement de capteurs qualité sur un grand réseau de distribution d́eau. Cheifetz, Nicolas; Sandraz, Anne-Claire; Féliers, Cédric; Gilbert, Denis; Piller, Olivier; and Heim, Véronique TSM, (11): 55-63. November 2017.
Un algorithme glouton pour le positionnement de capteurs qualité sur un grand réseau de distribution d́eau [link]Paper   doi   link   bibtex  
Extracting Temporal Patterns for Contamination Event Detection in a Large Water Distribution System. Cheifetz, N.; Kraiem, S.; Mandel, P.; Féliers, C.; and Heim, V. In 15th International Computing and Control for Water Industry conference (CCWI 2017), Sheffield, UK, September 2017.
Extracting Temporal Patterns for Contamination Event Detection in a Large Water Distribution System [link]Paper   link   bibtex  
Augmented Resilience of Water Distribution Systems following Severe Abnormal Events. Piller, O.; Sedehizade, F.; Bernard, T.; Braun, M.; Cheifetz, N.; Deuerlein, J.; Wagner, M.; Lapébie, E.; Trick, I.; Weber, J.; and Werey, C. In 15th International Computing and Control for Water Industry conference (CCWI 2017), Sheffield, UK, September 2017.
Augmented Resilience of Water Distribution Systems following Severe Abnormal Events [link]Paper   link   bibtex  
Modeling and Clustering Water Demand Patterns from Real-World Smart Meter Data. Cheifetz, N.; Noumir, Z.; Samé, A.; Sandraz, A.; Féliers, C.; and Heim, V. Drinking Water Engineering and Science Discussions, 2017. August 2017.
Modeling and Clustering Water Demand Patterns from Real-World Smart Meter Data [link]Paper   doi   link   bibtex  
  2016 (4)
ResiWater: A Franco-German Project for Augmented Resilience of Water Distribution Systems following Severe Abnormal Events. Piller, O.; Sedehizade, F.; Bernard, T.; Braun, M.; Cheifetz, N.; Deuerlein, J.; Korth, A.; Lapébie, E.; Trick, I.; Weber, J.; and Werey, C. In 14th International Computing and Control for Water Industry conference (CCWI 2016), Amsterdam, NL, November 2016.
ResiWater: A Franco-German Project for Augmented Resilience of Water Distribution Systems following Severe Abnormal Events [link]Paper   link   bibtex  
Modeling and Clustering Water Demand Patterns from Real-World Smart Meter Data. Cheifetz, N.; Noumir, Z.; Samé, A.; Sandraz, A.; Féliers, C.; and Heim, V. In 14th International Computing and Control for Water Industry conference (CCWI 2016), Amsterdam, NL, November 2016.
Modeling and Clustering Water Demand Patterns from Real-World Smart Meter Data [link]Paper   link   bibtex  
Segmenting Multivariate Time Series of Water Flow: a Prior Tool for Contamination Warning Systems. Boutalbi, R.; Cheifetz, N.; Sandraz, A.; Féliers, C.; and Heim, V. In International Conference on Embedded Systems in Telecommunications and Instrumentation (ICESTI 2016), Annaba, AL, October 2016.
Segmenting Multivariate Time Series of Water Flow: a Prior Tool for Contamination Warning Systems [link]Paper   link   bibtex  
Décomposition et classification de données fonctionnelles pour l'analyse de la consommation d'eau (in french). Samé, A.; Noumir, Z.; Cheifetz, N.; Sandraz, A.; and Féliers, C. In Clustering and Co-clustering (CluCo) workshop at conference Extraction et Gestion des Connaissances (EGC), Reims, FR, January 2016.
Décomposition et classification de données fonctionnelles pour l'analyse de la consommation d'eau (in french) [link]Paper   link   bibtex  
  2015 (4)
Forecasting Quality of Raw Water to Optimize Drinking Water Production. Cheifetz, N.; Fauchon, N.; ALMEIDA de OLIVEIRA, M.; Heim, V.; and Féliers, C. In International Conference Water, Megacities and Global Change, UNESCO HQ - Paris, FR, December 2015.
Forecasting Quality of Raw Water to Optimize Drinking Water Production [link]Paper   link   bibtex  
Décomposition et clustering de données fonctionnelles pour l'analyse de la consommation d'eau potable (in french). Noumir, Z.; Samé, A.; Cheifetz, N.; Sandraz, A.; and Féliers, C. October 2015.
Décomposition et clustering de données fonctionnelles pour l'analyse de la consommation d'eau potable (in french) [link]Paper   link   bibtex  
An Incremental Sensor Placement Optimization in a Large Real-World Water System. Cheifetz, N.; Sandraz, A.; Féliers, C.; Gilbert, D.; Piller, O.; and Lang, A. In volume 119, pages 947–952, Leicester, UK, September 2015. Elsevier
An Incremental Sensor Placement Optimization in a Large Real-World Water System [link]Paper   link   bibtex  
Une approche gloutonne pour le positionnement de capteurs sur le réseau de distribution du SEDIF. Cheifetz, N.; Sandraz, A.; Féliers, C.; Gilbert, D.; Piller, O.; and Lang, A. In Le 94ème congrès de l'ASTEE "Des villes et des territoires sobres et sûrs", Montauban, France, June 2015.
Une approche gloutonne pour le positionnement de capteurs sur le réseau de distribution du SEDIF [link]Paper   link   bibtex  
  2014 (1)
The Powered Two Wheelers fall detection using Multivariate CUmulative SUM (MCUSUM) control charts. Attal, F.; Boubezoul, A.; Oukhellou, L.; Cheifetz, N.; and Espié, S. In The 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, October 2014.
The Powered Two Wheelers fall detection using Multivariate CUmulative SUM (MCUSUM) control charts [link]Paper   link   bibtex  
  2013 (2)
Detection and classification of temporal CAN signatures to support maintenance of public transportation vehicle subsystems. Cheifetz, N. Ph.D. Thesis, Université Paris-Est, September 2013.
Detection and classification of temporal CAN signatures to support maintenance of public transportation vehicle subsystems [link]Paper   link   bibtex  
A Sequential Testing Procedure for Multiple Change-Point Detection in a Stream of Pneumatic Door Signatures. Cheifetz, N.; Samé, A.; Aknin, P.; de Verdalle, E.; and Chenu, D. In The 12th International Conference on Machine Learning and Applications (IEEE ICMLA'13), pages 117 - 122, Miami, Florida, USA, dec 2013.
A Sequential Testing Procedure for Multiple Change-Point Detection in a Stream of Pneumatic Door Signatures [link]Paper   doi   link   bibtex  
  2012 (5)
A sequential testing approach for change-point detection on bus door systems. Cheifetz, N.; Samé, A.; Aknin, P.; and de Verdalle, E. In Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference, pages 1846–1851, Anchorage, AK, USA, sep 2012.
doi   link   bibtex   abstract  
A CUSUM approach for online change-point detection on curve sequences. Cheifetz, N.; Samé, A.; Aknin, P.; and de Verdalle, E. In The 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pages 399–404, Bruges, BE, avr 2012.
A CUSUM approach for online change-point detection on curve sequences [pdf]Paper   link   bibtex  
A CUSUM-like approach for online change-point detection on bus door systems. Cheifetz, N.; Samé, A.; Aknin, P.; and de Verdalle, E. In CM 2012 and MFPT 2012 - The Ninth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, London, UK, jun 2012.
link   bibtex  
Optimization of alarm thresholds values in predictive maintenance. Cheifetz, N.; and Consortium EBSF Technical Report International Association of Public Transport (UITP), dec 2012.
Optimization of alarm thresholds values in predictive maintenance [link]Paper   link   bibtex  
Détection séquentielle d'anomalies pour le suivi de portes d'autobus. Cheifetz, N.; Samé, A.; Aknin, P.; Martinez, X.; and de Verdalle, E. In Journée GdR S3/SEE/SAFFE-GIS 3SGS, ENSAM - Paris, FR, Janvier 2012. Poster
link   bibtex  
  2011 (2)
A pattern recognition approach for anomaly detection on buses brake system. Cheifetz, N.; Samé, A.; Aknin, P.; and de Verdalle, E. In The 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pages 266 -271, Washington DC, USA, oct 2011.
doi   link   bibtex  
Diagnostic de sous-systèmes d'autobus à base de reconnaissance des formes. Cheifetz, N. In Actes IFSTTAR, editor(s), Journée Des Doctorants SPI-STIC de l'IFSTTAR 2011, Villeneuve-d'Ascq, FR, jun 2011. Prix de la meilleure présentation
link   bibtex  
  2009 (2)
Analyse en facteurs indépendants pour le diagnostic d'un composant de l'infrastructure ferroviaire dans un cadre semi-supervisé. Cheifetz, N. Master's thesis, Paris 6 - Université Pierre et Marie Curie (UPMC), sep 2009.
link   bibtex  
IFA for the Diagnosis of a Railway Infrastructure Device in a Semi-Supervised Learning. Cheifetz, N. Cagliari, IT, sep 2009.
IFA for the Diagnosis of a Railway Infrastructure Device in a Semi-Supervised Learning [link]Paper   link   bibtex