generated by bibbase.org
  2023 (1)
2022 in review: neuroAI comes of age. Mineault, P. 2023.
2022 in review: neuroAI comes of age [link]Paper   link   bibtex   abstract  
  2022 (1)
Recent Advances at the Interface of Neuroscience and Artificial Neural Networks. Cohen, Y., Engel, T. A., Langdon, C., Lindsay, G. W., Ott, T., Peters, M. A. K., Shine, J. M., Breton-Provencher, V., & Ramaswamy, S. Journal of Neuroscience, 42(45): 8514–8523. November 2022. Publisher: Society for Neuroscience Section: Symposia
Recent Advances at the Interface of Neuroscience and Artificial Neural Networks [link]Paper   doi   link   bibtex   abstract  
  2021 (3)
Abrupt hippocampal remapping signals resolution of memory interference. Wanjia, G., Favila, S. E., Kim, G., Molitor, R. J., & Kuhl, B. A. Nature Communications, 12(1): 4816. August 2021. Number: 1 Publisher: Nature Publishing Group
Abrupt hippocampal remapping signals resolution of memory interference [link]Paper   doi   link   bibtex   abstract  
Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Kar, K., & DiCarlo, J. J. Neuron, 109(1): 164–176.e5. January 2021.
Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition [link]Paper   doi   link   bibtex   abstract  
Leveraging Containers for Reproducible Psychological Research. Wiebels, K., & Moreau, D. Advances in Methods and Practices in Psychological Science, 4(2): 25152459211017853. April 2021. Publisher: SAGE Publications Inc
Leveraging Containers for Reproducible Psychological Research [link]Paper   doi   link   bibtex   abstract  
  2020 (1)
Analysis of task-based functional MRI data preprocessed with fMRIPrep. Esteban, O., Ciric, R., Finc, K., Blair, R. W., Markiewicz, C. J., Moodie, C. A., Kent, J. D., Goncalves, M., DuPre, E., Gomez, D. E. P., Ye, Z., Salo, T., Valabregue, R., Amlien, I. K., Liem, F., Jacoby, N., Stojić, H., Cieslak, M., Urchs, S., Halchenko, Y. O., Ghosh, S. S., De La Vega, A., Yarkoni, T., Wright, J., Thompson, W. H., Poldrack, R. A., & Gorgolewski, K. J. Nature Protocols, 15(7): 2186–2202. July 2020. Number: 7 Publisher: Nature Publishing Group
Analysis of task-based functional MRI data preprocessed with fMRIPrep [link]Paper   doi   link   bibtex   abstract  
  2019 (4)
Progress update from the hippocampal subfields group. Olsen, R. K., Carr, V. A., Daugherty, A. M., La Joie, R., Amaral, R. S., Amunts, K., Augustinack, J. C., Bakker, A., Bender, A. R., Berron, D., Boccardi, M., Bocchetta, M., Burggren, A. C., Chakravarty, M. M., Chételat, G., de Flores, R., DeKraker, J., Ding, S., Geerlings, M. I., Huang, Y., Insausti, R., Johnson, E. G., Kanel, P., Kedo, O., Kennedy, K. M., Keresztes, A., Lee, J. K., Lindenberger, U., Mueller, S. G., Mulligan, E. M., Ofen, N., Palombo, D. J., Pasquini, L., Pluta, J., Raz, N., Rodrigue, K. M., Schlichting, M. L., Lee Shing, Y., Stark, C. E., Steve, T. A., Suthana, N. A., Wang, L., Werkle-Bergner, M., Yushkevich, P. A., Yu, Q., Wisse, L. E., & Group, H. S. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 11(1): 439–449. 2019. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1016/j.dadm.2019.04.001
Progress update from the hippocampal subfields group [link]Paper   doi   link   bibtex   abstract  
Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Kar, K., Kubilius, J., Schmidt, K., Issa, E. B., & DiCarlo, J. J. Nature Neuroscience, 22(6): 974–983. June 2019.
Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior [link]Paper   doi   link   bibtex   abstract  
fMRIPrep: a robust preprocessing pipeline for functional MRI. Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. Nature Methods, 16(1): 111–116. January 2019. Number: 1 Publisher: Nature Publishing Group
fMRIPrep: a robust preprocessing pipeline for functional MRI [link]Paper   doi   link   bibtex   abstract  
PyBIDS: Python tools for BIDS datasets. Yarkoni, T., Markiewicz, C. J, de la Vega, A., Gorgolewski, K. J, Salo, T., Halchenko, Y. O, McNamara, Q., DeStasio, K., Poline, J., Petrov, D., Hayot-Sasson, V., Nielson, D. M, Carlin, J., Kiar, G., Whitaker, K., DuPre, E., Wagner, A., Tirrell, L. S, Jas, M., Hanke, M., Poldrack, R. A, Esteban, O., Appelhoff, S., Holdgraf, C., Staden, I., Thirion, B., Kleinschmidt, D. F, Lee, J. A, Visconti di Oleggio Castello, M., Notter, M. P, & Blair, R. Journal of open source software, 4(40): 1294. 2019.
PyBIDS: Python tools for BIDS datasets [link]Paper   doi   link   bibtex  
  2018 (1)
Retrosplenial cortex and its role in spatial cognition. Mitchell, A. S., Czajkowski, R., Zhang, N., Jeffery, K., & Nelson, A. J. D. Brain and Neuroscience Advances, 2: 2398212818757098. March 2018.
Retrosplenial cortex and its role in spatial cognition [link]Paper   doi   link   bibtex   abstract  
  2017 (1)
MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., & Gorgolewski, K. J. PLoS ONE, 12(9): e0184661. September 2017.
MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites [link]Paper   doi   link   bibtex   abstract  
  2016 (3)
The medial prefrontal cortex—lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition. Chao, O. Y., Huston, J. P., Li, J., Wang, A., & de Souza Silva, M. A. Hippocampus, 26(5): 633–645. 2016. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.22547
The medial prefrontal cortex—lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition [link]Paper   doi   link   bibtex   abstract  
The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B. N., Nichols, T. E., Pellman, J., Poline, J., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., Turner, J. A., Varoquaux, G., & Poldrack, R. A. Scientific Data, 3(1): 160044. June 2016. Number: 1 Publisher: Nature Publishing Group
The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments [link]Paper   doi   link   bibtex   abstract  
The FAIR Guiding Principles for scientific data management and stewardship. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., & Mons, B. Scientific Data, 3(1): 160018. March 2016. Number: 1 Publisher: Nature Publishing Group
The FAIR Guiding Principles for scientific data management and stewardship [link]Paper   doi   link   bibtex   abstract   3 downloads  
  2015 (1)
What memory is. Klein, S. B. WIREs Cognitive Science, 6(1): 1–38. 2015. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcs.1333
What memory is [link]Paper   doi   link   bibtex   abstract  
  2014 (1)
The forgotten insular cortex: Its role on recognition memory formation. Bermudez-Rattoni, F. Neurobiology of Learning and Memory, 109: 207–216. March 2014.
The forgotten insular cortex: Its role on recognition memory formation [link]Paper   doi   link   bibtex   abstract  
  2008 (1)
Is the parietal lobe necessary for recollection in humans?. Simons, J. S., Peers, P. V., Hwang, D. Y., Ally, B. A., Fletcher, P. C., & Budson, A. E. Neuropsychologia, 46(4): 1185–1191. March 2008.
doi   link   bibtex   abstract  
  2006 (1)
Ventromedial Prefrontal Cortex Is Obligatory for Consolidation and Reconsolidation of Object Recognition Memory. Akirav, I., & Maroun, M. Cerebral Cortex, 16(12): 1759–1765. December 2006.
Ventromedial Prefrontal Cortex Is Obligatory for Consolidation and Reconsolidation of Object Recognition Memory [link]Paper   doi   link   bibtex   abstract  
  2005 (3)
Functional connectivity with the hippocampus during successful memory formation. Ranganath, C., Heller, A., Cohen, M. X., Brozinsky, C. J., & Rissman, J. Hippocampus, 15(8): 997–1005. 2005.
doi   link   bibtex   abstract  
A Dissociation of Encoding and Retrieval Processes in the Human Hippocampus. Eldridge, L. L., Engel, S. A., Zeineh, M. M., Bookheimer, S. Y., & Knowlton, B. J. Journal of Neuroscience, 25(13): 3280–3286. March 2005. Publisher: Society for Neuroscience Section: Behavioral/Systems/Cognitive
A Dissociation of Encoding and Retrieval Processes in the Human Hippocampus [link]Paper   doi   link   bibtex   abstract  
Distinct Roles for Lateral and Medial Anterior Prefrontal Cortex in Contextual Recollection. Simons, J. S., Gilbert, S. J., Owen, A. M., Fletcher, P. C., & Burgess, P. W. Journal of neurophysiology, 94(1): 10.1152/jn.01200.2004. July 2005.
Distinct Roles for Lateral and Medial Anterior Prefrontal Cortex in Contextual Recollection [link]Paper   doi   link   bibtex   abstract  
  2003 (2)
Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Davachi, L., Mitchell, J. P., & Wagner, A. D. Proceedings of the National Academy of Sciences, 100(4): 2157–2162. February 2003. Publisher: Proceedings of the National Academy of Sciences
Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories [link]Paper   doi   link   bibtex   abstract  
Recognition Memory and the Human Hippocampus. Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G., & Squire, L. R. Neuron, 37(1): 171–180. January 2003.
Recognition Memory and the Human Hippocampus [link]Paper   doi   link   bibtex   abstract  
  2002 (7)
Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Genovese, C. R., Lazar, N. A., & Nichols, T. NeuroImage, 15(4): 870–878. April 2002.
doi   link   bibtex   abstract  
Episodic Memory: From Mind to Brain. Tulving, E. Annual Review of Psychology, 53(1): 1–25. 2002. _eprint: https://doi.org/10.1146/annurev.psych.53.100901.135114
Episodic Memory: From Mind to Brain [link]Paper   doi   link   bibtex   abstract  
Human declarative memory formation: Segregating rhinal and hippocampal contributions. Fernández, G, Klaver, P, Fell, J, Grunwald, T, & Elger, C. Hippocampus, 12: 514–519. 2002.
Human declarative memory formation: Segregating rhinal and hippocampal contributions [link]Paper   doi   link   bibtex  
Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans?. Holdstock, J., Mayes, A., Roberts, N., Cezayirli, E., Isaac, C., O'Reilly, R., & Norman, K. Hippocampus, 12(3): 341–351. 2002. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.10011
Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? [link]Paper   doi   link   bibtex   abstract  
Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Mayes, A., Holdstock, J., Isaac, C., Hunkin, N., & Roberts, N. Hippocampus, 12(3): 325–340. 2002. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.1111
Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus [link]Paper   doi   link   bibtex   abstract  
Recognition Memory for Single Items and for Associations Is Similarly Impaired Following Damage to the Hippocampal Region. Stark, C. E. L., Bayley, P. J., & Squire, L. R. Learning & Memory, 9(5): 238–242. September 2002. Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab
Recognition Memory for Single Items and for Associations Is Similarly Impaired Following Damage to the Hippocampal Region [link]Paper   doi   link   bibtex   abstract  
Orbitofrontal Cortex and Memory Formation. Frey, S., & Petrides, M. Neuron, 36(1): 171–176. September 2002.
Orbitofrontal Cortex and Memory Formation [link]Paper   doi   link   bibtex   abstract  
  2001 (2)
Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys†. Baxter, M. G., & Murray, E. A. Hippocampus, 11(1): 61–71. 2001. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/1098-1063%282001%2911%3A1%3C61%3A%3AAID-HIPO1021%3E3.0.CO%3B2-Z
Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys† [link]Paper   doi   link   bibtex   abstract  
Recognition memory: What are the roles of the perirhinal cortex and hippocampus?. Brown, M. W., & Aggleton, J. P. Nature Reviews Neuroscience, 2(1): 51–61. January 2001. Number: 1 Publisher: Nature Publishing Group
Recognition memory: What are the roles of the perirhinal cortex and hippocampus? [link]Paper   doi   link   bibtex   abstract  
  2000 (2)
The Parahippocampal Region and Object Identification. Murray, E. A., Bussey, T. J., Hampton, R. R., & Saksida, L. M. Annals of the New York Academy of Sciences, 911(1): 166–174. 2000. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2000.tb06725.x
The Parahippocampal Region and Object Identification [link]Paper   doi   link   bibtex   abstract  
Remembering episodes: A selective role for the hippocampus during retrieval. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. Nature Neuroscience, 3(11): 1149–1152. November 2000.
doi   link   bibtex   abstract  
  1996 (2)
Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum. Suzuki, W. A. Seminars in Neuroscience, 8(1): 3–12. February 1996.
Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum [link]Paper   doi   link   bibtex   abstract  
Effects of rhinal cortex lesions combined with hippocampectomy on visual recognition memory in rhesus monkeys. Meunier, M., Hadfield, W., Bachevalier, J., & Murray, E. A. Journal of Neurophysiology, 75(3): 1190–1205. March 1996. Publisher: American Physiological Society
Effects of rhinal cortex lesions combined with hippocampectomy on visual recognition memory in rhesus monkeys [link]Paper   doi   link   bibtex   abstract  
  1995 (2)
Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. Alvarez, P., Zola-Morgan, S., & Squire, L. R. Journal of Neuroscience, 15(5): 3796–3807. May 1995. Publisher: Society for Neuroscience Section: Articles
Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys [link]Paper   doi   link   bibtex   abstract  
Item and Order Recognition Memory in Subjects with Hypoxic Brain Injury. Hopkins, R. O., Kesner, R. P., & Goldstein, M. Brain and Cognition, 27(2): 180–201. March 1995.
Item and Order Recognition Memory in Subjects with Hypoxic Brain Injury [link]Paper   doi   link   bibtex   abstract  
  1994 (2)
Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. Suzuki, W. A., & Amaral, D. G. Journal of Neuroscience, 14(3): 1856–1877. March 1994. Publisher: Society for Neuroscience Section: Articles
Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices [link]Paper   doi   link   bibtex   abstract  
Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. Suzuki, W. L., & Amaral, D. G. Journal of Comparative Neurology, 350(4): 497–533. 1994. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cne.903500402
Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents [link]Paper   doi   link   bibtex   abstract  
  1993 (1)
Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. Meunier, M., Bachevalier, J., Mishkin, M., & Murray, E. A. Journal of Neuroscience, 13(12): 5418–5432. December 1993. Publisher: Society for Neuroscience Section: Articles
Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys [link]Paper   doi   link   bibtex   abstract  
  1991 (1)
Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. Witter, M., & Amaral, D. Journal of Comparative Neurology, 307: 437–459. 1991.
doi   link   bibtex  
  1989 (1)
Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. Zola-Morgan, S., Squire, L. R., Amaral, D. G., & Suzuki, W. A. Journal of Neuroscience, 9(12): 4355–4370. December 1989. Publisher: Society for Neuroscience Section: Articles
Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment [link]Paper   doi   link   bibtex   abstract  
  1986 (1)
Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. Murray, E. A., & Mishkin, M. Journal of Neuroscience, 6(7): 1991–2003. July 1986. Publisher: Society for Neuroscience Section: Articles
Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy [link]Paper   doi   link   bibtex   abstract  
  1984 (1)
Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Goldman-Rakic, P. S., Selemon, L. D., & Schwartz, M. L. Neuroscience, 12(3): 719–743. July 1984.
Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey [link]Paper   doi   link   bibtex   abstract  
  1975 (1)
Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Van Hoesen, G. W., & Pandya, D. N. Brain Research, 95(1): 1–24. September 1975.
Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents [link]Paper   doi   link   bibtex   abstract  
  1963 (1)
Implications of short-term memory for a general theory of memory. Melton, A. W. Journal of Verbal Learning and Verbal Behavior, 2(1): 1–21. July 1963.
Implications of short-term memory for a general theory of memory [link]Paper   doi   link   bibtex  
  undefined (1)
An automatically and computationally reproducible neuroimaging analysis from scratch — The DataLad Handbook.
An automatically and computationally reproducible neuroimaging analysis from scratch — The DataLad Handbook [link]Paper   link   bibtex   abstract