generated by bibbase.org
  2023 (1)
Complex Defect Chemistry of Hydrothermally-synthesized Nb-substituted β′-LiVOPO 4. Lee, K.; Zhou, H.; Zuba, M., J.; Kaplan, C., M.; Zong, Y.; Qiao, L.; Zhou, G.; Chernova, N., A.; Liu, H.; and Whittingham, S. Journal of Materials Chemistry A, (207890): 121. 2023.
Complex Defect Chemistry of Hydrothermally-synthesized Nb-substituted β′-LiVOPO 4 [pdf]Paper   Complex Defect Chemistry of Hydrothermally-synthesized Nb-substituted β′-LiVOPO 4 [link]Website   doi   link   bibtex   abstract  
  2022 (3)
Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation. Zhang, H.; Liu, H.; Piper, L., F., J.; Whittingham, M., S.; and Zhou, G. Chemical Reviews, 122(6): 5641-5681. 3 2022.
Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation [pdf]Paper   Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation [link]Website   doi   link   bibtex   abstract  
Surface Reduction Stabilizes the Single-Crystalline Ni-Rich Layered Cathode for Li-Ion Batteries. Fan, Q.; Zuba, M., J.; Zong, Y.; Menon, A., S.; Pacileo, A., T.; Piper, L., F.; Zhou, G.; and Liu, H. ACS Applied Materials & Interfaces, 14(34): 38795-38806. 8 2022.
Surface Reduction Stabilizes the Single-Crystalline Ni-Rich Layered Cathode for Li-Ion Batteries [pdf]Paper   Surface Reduction Stabilizes the Single-Crystalline Ni-Rich Layered Cathode for Li-Ion Batteries [link]Website   doi   link   bibtex   3 downloads  
Reaction Mechanism of Na-Ion Deintercalation in Na 2 CoSiO 4. Wang, J.; Hoteling, G.; Shepard, R.; Wahila, M.; Wang, F.; Smeu, M.; and Liu, H. The Journal of Physical Chemistry C, 126(40): 16983-16992. 10 2022.
Reaction Mechanism of Na-Ion Deintercalation in Na 2 CoSiO 4 [pdf]Paper   Reaction Mechanism of Na-Ion Deintercalation in Na 2 CoSiO 4 [link]Website   doi   link   bibtex   abstract  
  2021 (2)
Structure, Composition, and Electrochemistry of Chromium-Substituted ε-LiVOPO 4. Lee, K.; Siu, C.; Hidalgo, M., F., V.; Rana, J.; Zuba, M.; Chung, Y.; Omenya, F.; Piper, L., F., J.; Liu, H.; Chernova, N., A.; and Whittingham, M., S. ACS Applied Energy Materials, 4(2): 1421-1430. 2 2021.
Structure, Composition, and Electrochemistry of Chromium-Substituted ε-LiVOPO 4 [pdf]Paper   Structure, Composition, and Electrochemistry of Chromium-Substituted ε-LiVOPO 4 [link]Website   doi   link   bibtex   abstract   9 downloads  
Al Substitution for Mn during Co-Precipitation Boosts the Electrochemical Performance of LiNi 0.8 Mn 0.1 Co 0.1 O 2. Pei, B.; Zhou, H.; Goel, A.; Zuba, M.; Liu, H.; Xin, F.; and Whittingham, M., S. Journal of The Electrochemical Society, 168(5): 050532. 5 2021.
Al Substitution for Mn during Co-Precipitation Boosts the Electrochemical Performance of LiNi 0.8 Mn 0.1 Co 0.1 O 2 [pdf]Paper   Al Substitution for Mn during Co-Precipitation Boosts the Electrochemical Performance of LiNi 0.8 Mn 0.1 Co 0.1 O 2 [link]Website   doi   link   bibtex  
  2020 (2)
Best practices for operando depth-resolving battery experiments. Liu, H.; Li, Z.; Grenier, A.; Kamm, G., E.; Yin, L.; Mattei, G., S.; Cosby, M., R.; Khalifah, P., G.; Chupas, P., J.; and Chapman, K., W. Journal of Applied Crystallography, 53(1): 133-139. 2 2020.
Best practices for operando depth-resolving battery experiments [pdf]Paper   Best practices for operando depth-resolving battery experiments [link]Website   doi   link   bibtex   abstract   5 downloads  
Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes. Grenier, A.; Reeves, P., J.; Liu, H.; Seymour, I., D.; Märker, K.; Wiaderek, K., M.; Chupas, P., J.; Grey, C., P.; and Chapman, K., W. Journal of the American Chemical Society, 142(15): 7001-7011. 4 2020.
Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes [pdf]Paper   Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes [link]Website   doi   link   bibtex   abstract   1 download  
  2019 (3)
Quantifying Reaction and Rate Heterogeneity in Battery Electrodes in 3D through Operando X-ray Diffraction Computed Tomography. Liu, H.; Kazemiabnavi, S.; Grenier, A.; Vaughan, G.; Di Michiel, M.; Polzin, B., J.; Thornton, K.; Chapman, K., W.; and Chupas, P., J. ACS Applied Materials & Interfaces, 11(20): 18386-18394. 5 2019.
Quantifying Reaction and Rate Heterogeneity in Battery Electrodes in 3D through Operando X-ray Diffraction Computed Tomography [pdf]Paper   Quantifying Reaction and Rate Heterogeneity in Battery Electrodes in 3D through Operando X-ray Diffraction Computed Tomography [link]Website   doi   link   bibtex   1 download  
Revisiting the charge compensation mechanisms in LiNi0.8Co0.2−yAlyO2 systems. Lebens-Higgins, Z., W.; Faenza, N., V.; Radin, M., D.; Liu, H.; Sallis, S.; Rana, J.; Vinckeviciute, J.; Reeves, P., J.; Zuba, M., J.; Badway, F.; Pereira, N.; Chapman, K., W.; Lee, T.; Wu, T.; Grey, C., P.; Melot, B., C.; Van Der Ven, A.; Amatucci, G., G.; Yang, W.; and Piper, L., F., J. Materials Horizons, 6(10): 2112-2123. 2019.
Revisiting the charge compensation mechanisms in LiNi<sub>0.8</sub>Co<sub>0.2−y</sub>Al<sub>y</sub>O<sub>2</sub> systems [pdf]Paper   Revisiting the charge compensation mechanisms in LiNi<sub>0.8</sub>Co<sub>0.2−y</sub>Al<sub>y</sub>O<sub>2</sub> systems [link]Website   doi   link   bibtex   abstract   1 download  
Reactivity-Guided Interface Design in Na Metal Solid-State Batteries. Tian, Y.; Sun, Y.; Hannah, D., C.; Xiao, Y.; Liu, H.; Chapman, K., W.; Bo, S., H.; and Ceder, G. Joule, 0(0): 1-14. 1 2019.
Reactivity-Guided Interface Design in Na Metal Solid-State Batteries [pdf]Paper   Reactivity-Guided Interface Design in Na Metal Solid-State Batteries [link]Website   doi   link   bibtex   abstract  
  2018 (3)
Localized concentration reversal of lithium during intercalation into nanoparticles. Zhang, W.; Yu, H.; Wu, L.; Liu, H.; Abdellahi, A.; Qiu, B.; Bai, J.; Orvananos, B.; Strobridge, F., C.; Zhou, X.; Liu, Z.; Ceder, G.; Zhu, Y.; Thornton, K.; Grey, C., P.; and Wang, F. Science Advances, 4(1): eaao2608. 2018.
Localized concentration reversal of lithium during intercalation into nanoparticles [pdf]Paper   Localized concentration reversal of lithium during intercalation into nanoparticles [link]Website   doi   link   bibtex   abstract  
Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 – a model compound for classical layered intercalation. Liu, H.; Liu, H.; Seymour, I., D.; Chernova, N.; Wiaderek, K., M.; Trease, N., M.; Hy, S.; Chen, Y.; An, K.; Zhang, M.; Borkiewicz, O., J.; Lapidus, S., H.; Qiu, B.; Xia, Y.; Liu, Z.; Chupas, P., J.; Chapman, K., W.; Whittingham, M., S.; Grey, C., P.; and Meng, Y., S. Journal of Materials Chemistry A, 6(9): 4189-4198. 2018.
Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 – a model compound for classical layered intercalation [pdf]Paper   Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 – a model compound for classical layered intercalation [link]Website   doi   link   bibtex   abstract  
Identifying the chemical and structural irreversibility in LiNi0.8Co0.15Al0.05O2 – a model compound for classical layered intercalation. Liu, H.; Liu, H.; Seymour, I., D.; Chernova, N.; Wiaderek, K., M.; Trease, N., M.; Hy, S.; Chen, Y.; An, K.; Zhang, M.; Borkiewicz, O., J.; Lapidus, S., H.; Qiu, B.; Xia, Y.; Liu, Z.; Chupas, P., J.; Chapman, K., W.; Whittingham, M., S.; Grey, C., P.; and Meng, Y., S. Journal of Materials Chemistry A, 6(9): 4189-4198. 2018.
Identifying the chemical and structural irreversibility in LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> – a model compound for classical layered intercalation [pdf]Paper   Identifying the chemical and structural irreversibility in LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> – a model compound for classical layered intercalation [link]Website   doi   link   bibtex   abstract   1 download  
  2017 (4)
Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes. Liu, H.; Wolf, M.; Karki, K.; Yu, Y.; Stach, E., A.; Cabana, J.; Chapman, K., W.; and Chupas, P., J. Nano Letters, 17(6): 3452-3457. 6 2017.
Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes [pdf]Paper   Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes [link]Website   doi   link   bibtex  
Sensitivity and Limitations of Structures from X-ray and Neutron-Based Diffraction Analyses of Transition Metal Oxide Lithium-Battery Electrodes. Liu, H.; Liu, H.; Lapidus, S., H.; Meng, Y., S.; Chupas, P., J.; and Chapman, K., W. Journal of The Electrochemical Society, 164(9): A1802-A1811. 6 2017.
Sensitivity and Limitations of Structures from X-ray and Neutron-Based Diffraction Analyses of Transition Metal Oxide Lithium-Battery Electrodes [pdf]Paper   Sensitivity and Limitations of Structures from X-ray and Neutron-Based Diffraction Analyses of Transition Metal Oxide Lithium-Battery Electrodes [link]Website   doi   link   bibtex   abstract   1 download  
Effects of Antisite Defects on Li Diffusion in LiFePO4 Revealed by Li Isotope Exchange. Liu, H.; Choe, M.; Enrique, R., A.; Orvañanos, B.; Zhou, L.; Liu, T.; Thornton, K.; and Grey, C., P. The Journal of Physical Chemistry C, 121(22): 12025-12036. 6 2017.
Effects of Antisite Defects on Li Diffusion in LiFePO<sub>4</sub> Revealed by Li Isotope Exchange [pdf]Paper   Effects of Antisite Defects on Li Diffusion in LiFePO<sub>4</sub> Revealed by Li Isotope Exchange [link]Website   doi   link   bibtex  
Reaction Heterogeneity in LiNi0.8Co0.15Al0.05O2 Induced by Surface Layer. Grenier, A.; Liu, H.; Wiaderek, K., M.; Lebens-Higgins, Z., W.; Borkiewicz, O., J.; Piper, L., F., J.; Chupas, P., J.; and Chapman, K., W. Chemistry of Materials, 29(17): 7345-7352. 9 2017.
Reaction Heterogeneity in LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> Induced by Surface Layer [pdf]Paper   Reaction Heterogeneity in LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> Induced by Surface Layer [link]Website   doi   link   bibtex   abstract  
  2016 (6)
A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices. Liu, H.; Allan, P., K.; Borkiewicz, O., J.; Kurtz, C.; Grey, C., P.; Chapman, K., W.; and Chupas, P., J. Journal of Applied Crystallography, 49(5): 1665-1673. 10 2016.
A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices [pdf]Paper   A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices [link]Website   doi   link   bibtex   abstract  
Influence of particle size, cycling rate and temperature on the lithiation process of anatase TiO2. Liu, H.; and Grey, C., P. Journal of Materials Chemistry A, 4(17): 6433-6446. 2016.
Influence of particle size, cycling rate and temperature on the lithiation process of anatase TiO<sub>2</sub> [pdf]Paper   Influence of particle size, cycling rate and temperature on the lithiation process of anatase TiO<sub>2</sub> [link]Website   doi   link   bibtex   abstract   1 download  
Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2. Trease, N., M.; Seymour, I., D.; Radin, M., D.; Liu, H.; Liu, H.; Hy, S.; Chernova, N.; Parikh, P.; Devaraj, A.; Wiaderek, K., M.; Chupas, P., J.; Chapman, K., W.; Whittingham, M., S.; Meng, Y., S.; Van der Van, A.; and Grey, C., P. Chemistry of Materials, 28(22): 8170-8180. 11 2016.
Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2 [pdf]Paper   Identifying the Distribution of Al 3+ in LiNi 0.8 Co 0.15 Al 0.05 O 2 [link]Website   doi   link   bibtex  
Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries. Pecher, O.; Bayley, P., M.; Liu, H.; Liu, Z.; Trease, N., M.; and Grey, C., P. Journal of Magnetic Resonance, 265: 200-209. 4 2016.
Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries [link]Website   doi   link   bibtex   1 download  
Thermodynamics, Kinetics and Structural Evolution of ε-LiVOPO 4 over Multiple Lithium Intercalation. Lin, Y.; Wen, B.; Wiaderek, K., M.; Sallis, S.; Liu, H.; Lapidus, S., H.; Borkiewicz, O., J.; Quackenbush, N., F.; Chernova, N., A.; Karki, K.; Omenya, F.; Chupas, P., J.; Piper, L., F., J.; Whittingham, M., S.; Chapman, K., W.; and Ong, S., P. Chemistry of Materials, 28(6): 1794-1805. 3 2016.
Thermodynamics, Kinetics and Structural Evolution of ε-LiVOPO 4 over Multiple Lithium Intercalation [pdf]Paper   Thermodynamics, Kinetics and Structural Evolution of ε-LiVOPO 4 over Multiple Lithium Intercalation [link]Website   doi   link   bibtex  
Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4. Strobridge, F., C.; Liu, H.; Leskes, M.; Borkiewicz, O., J.; Wiaderek, K., M.; Chupas, P., J.; Chapman, K., W.; and Grey, C., P. Chemistry of Materials, 28(11): 3676-3690. 6 2016.
Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4 [pdf]Paper   Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4 [link]Website   doi   link   bibtex   abstract  
  2015 (1)
Mapping the Inhomogeneous Electrochemical Reaction Through Porous LiFePO4 -Electrodes in a Standard Coin Cell Battery. Strobridge, F., C.; Orvananos, B.; Croft, M.; Yu, H.; Robert, R.; Liu, H.; Zhong, Z.; Connolley, T.; Drakopoulos, M.; Thornton, K.; and Grey, C., P. Chemistry of Materials, 27(7): 2374-2386. 4 2015.
Mapping the Inhomogeneous Electrochemical Reaction Through Porous LiFePO<sub>4</sub> -Electrodes in a Standard Coin Cell Battery [pdf]Paper   Mapping the Inhomogeneous Electrochemical Reaction Through Porous LiFePO<sub>4</sub> -Electrodes in a Standard Coin Cell Battery [link]Website   doi   link   bibtex   3 downloads  
  2014 (1)
Capturing metastable structures during high-rate cycling of LiFePO₄ nanoparticle electrodes. Liu, H.; Strobridge, F., C.; Borkiewicz, O., J.; Wiaderek, K., M.; Chapman, K., W.; Chupas, P., J.; and Grey, C., P. Science (New York, N.Y.), 344: 1252817. 6 2014.
Capturing metastable structures during high-rate cycling of LiFePO₄ nanoparticle electrodes. [pdf]Paper   Capturing metastable structures during high-rate cycling of LiFePO₄ nanoparticle electrodes. [link]Website   doi   link   bibtex   abstract   1 download