generated by bibbase.org
  2020 (6)
Controls of extreme isotopic enrichment in modern microbialites and associated abiogenic carbonates. Beeler, S. R; Gomez, F. J; and Bradley, A. S Geochimica et Cosmochimica Acta, 269: 136–149. 2020.
Controls of extreme isotopic enrichment in modern microbialites and associated abiogenic carbonates [link]Paper   doi   bibtex  
Isotopic fractionation associated with sulfate import and activation by Desulfovibrio vulgaris str. Hildenborough. Smith, D; Fike, D. A.; Johnston, D. T.; and Bradley, A. S. Frontiers in Microbiology, 11(September): 1–14. 2020.
doi   bibtex   abstract  
The Isotopic Imprint of Life on an Evolving Planet. Lloyd, M.; McClelland, H.; Antler, G.; Bradley, A.; Halevy, I.; Junium, C.; Wankel, S.; and Zerkle, A. Space Science Reviews, 216(7). 2020.
doi   bibtex   abstract  
Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth. McClelland, H. L. O.; Jones, C; Chubiz, L. M.; Fike, D. A.; and Bradley, A. S. mBio, 11(2): 1–9. 2020.
Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth [link]Paper   doi   bibtex   abstract  
Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances. Bertran, E.; Waldeck, A.; Wing, B. A.; Halevy, I.; Leavitt, W. D.; Bradley, A. S.; and Johnston, D. T. The ISME Journal,1–12. 2020.
Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances [link]Paper   doi   bibtex   abstract  
Endosymbiotic adaptations in three new bacterial species associated with Dictyostelium discoideum: Burkholderia agricolaris sp. nov., Burkholderia hayleyella sp. nov., and Burkholderia bonniea sp. nov. Brock, D. A.; Hubert, A. N.; Noh, S.; DiSalvo, S.; Geist, K. S.; Haselkorn, T.; Queller, D. C.; and Strassmann, J. E. PeerJ, 8: e9151. 2020.
doi   bibtex   abstract  
  2019 (5)
Paired organic matter and pyrite $\delta$34S records reveal mechanisms of carbon , sulfur , and iron cycle disruption during Ocean Anoxic Event 2. Raven, M. R.; Fike, D. A; Bradley, A. S; Gomes, M. L; Owens, J. D; and Webb, S. A Earth and Planetary Science Letters, 512: 27–38. 2019.
Paired organic matter and pyrite $\delta$34S records reveal mechanisms of carbon , sulfur , and iron cycle disruption during Ocean Anoxic Event 2 [link]Paper   doi   bibtex   abstract  
Silurian records of carbon and sulfur cycling from Estonia : The importance of depositional environment on isotopic trends. Richardson, J. A; Keating, C.; Lepland, A.; Hints, O.; Bradley, A. S; and Fike, D. A Earth and Planetary Science Letters, 512: 71–82. 2019.
Silurian records of carbon and sulfur cycling from Estonia : The importance of depositional environment on isotopic trends [link]Paper   doi   bibtex   abstract  
Proteomic and Isotopic Response of Desulfovibrio vulgaris to DsrC Perturbation. Leavitt, W. D; Venceslau, S. S; Waldbauer, J.; Smith, D. A; Pereira, I. A C.; and Bradley, A. S Frontiers in Microbiology, 10(April): 1–13. 2019.
doi   bibtex   abstract  
Sulfur isotope analysis of microcrystalline iron sulfides using secondary ion mass spectrometry imaging : Extracting local paleo ‐ environmental information from modern and ancient sediments. Bryant, R. N; Jones, C.; Raven, M. R; Gomes, M. L; Berelson, W. M; Bradley, A. S; and Fike, D. A Rapid Communications in Mass Spectrometry, 33: 491–502. 2019.
doi   bibtex   abstract  
Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates. Rose, C. V; Webb, S. M; Newville, M.; Lanzirotti, A.; Richardson, J. A; Tosca, N. J; Catalano, J. G; Bradley, A. S; and Fike, D. A Geology, 47(9): 833–837. 2019.
doi   bibtex  
  2018 (1)
Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Raven, M. R.; Fike, D. A; Gomes, M. L; Webb, S. M; Bradley, A. S; and Mcclelland, H. O Nature Communications, 9: 3409. 2018.
Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization [link]Paper   doi   bibtex   abstract  
  2017 (3)
Hydrogen isotope composition of Thermoanaerobacterium saccharolyticum lipids : Comparing wild type with a nfn- transhydrogenase mutant. Leavitt, W. D; Murphy, S. J.; Lynd, L. R; and Bradley, A. S Organic Geochemistry, 113: 239–241. 2017.
Hydrogen isotope composition of Thermoanaerobacterium saccharolyticum lipids : Comparing wild type with a nfn- transhydrogenase mutant [link]Paper   doi   bibtex  
Heritability of the Structures and 13C Fractionation in Tomato Leaf Wax Alkanes: A Genetic Model System to Inform Paleoenvironmental Reconstructions. Bender, A. L. D.; Chitwood, D. H.; and Bradley, A. S. Frontiers in Earth Science, 5(June): 1–13. 2017.
Heritability of the Structures and 13C Fractionation in Tomato Leaf Wax Alkanes: A Genetic Model System to Inform Paleoenvironmental Reconstructions [link]Paper   doi   bibtex  
Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairment. Bradley, A. S.; Swanson, P. K.; Muller, E. E. L.; Bringel, F.; Caroll, S. M.; Pearson, A.; Vuilleumier, S.; and Marx, C. J. PLoS One, 12(3): e0173323. 2017.
Hopanoid-free Methylobacterium extorquens DM4 overproduces carotenoids and has widespread growth impairment [link]Paper   doi   bibtex  
  2016 (6)
The sluggish speed of making abiotic methane. Bradley, A. S. Proceedings of the National Academy of Sciences, 113(49): 13944–13946. 2016.
The sluggish speed of making abiotic methane [link]Paper   doi   bibtex  
Patterns of sulfur isotope fractionation during Microbial Sulfate Reduction. Bradley, A.; Leavitt, W.; Schmidt, M.; Knoll, A.; Girguis, P.; and Johnston, D. Geobiology, 14: 91–101. 2016.
Patterns of sulfur isotope fractionation during Microbial Sulfate Reduction [link]Paper   doi   bibtex  
Transhydrogenase and growth substrate influence lipid hydrogen isotope ratios in Desulfovibrio alaskensis G20. Leavitt, W. D; Flynn, T. M; Suess, M. K; and Bradley, A. S Frontiers in Microbiology, 7(918). 2016.
doi   bibtex   abstract  
Fractionation of sulfur and hydrogen isotopes in Desulfovibrio vulgaris with perturbed DsrC expression. Leavitt, W. D.; Venceslau, S. S.; Pereira, I. A C; Johnston, D. T.; and Bradley, A. S. FEMS Microbiology Letters, 363(20): 1–8. 2016.
doi   bibtex  
Geomicrobiology of Sulfur. Fike, D. A; Bradley, A. S; and Leavitt, W. D In Erlich's Geomicrobiology, pages 479–515. 2016.
bibtex  
Thiosulfate oxidation by Thiomicrospira thermophila: Metabolic flexibility in response to ambient geochemistry. Houghton, J. L.; Foustoukos, D. I.; Flynn, T. M.; Vetriani, C.; Bradley, A. S.; and Fike, D. A. Environmental Microbiology, 18: 3057–3072. 2016.
doi   bibtex   abstract  
  2015 (3)
Hopanoids as functional analogues of cholesterol in bacterial membranes. Sáenz, J. P.; Grosser, D.; Bradley, A. S.; Lagny, T. J.; Lavrynenko, O.; Broda, M.; and Simons, K. Proceedings of the National Academy of Sciences, 112(38): 11971–11976. 2015.
Hopanoids as functional analogues of cholesterol in bacterial membranes [link]Paper   doi   bibtex  
Sulfur Isotope Effects of Dissimilatory Sulfite Reductase. Leavitt, W. D; Bradley, A. S; Santos, A. A; In\^es A. C. Pereira; and Johnston, D. T. Frontiers in Microbiology, 6(December): 1–38. 2015.
doi   bibtex  
Rethinking the Ancient Sulfur Cycle. Fike, D. A.; Bradley, A. S.; and Rose, C. V. Annual Review of Earth and Planetary Sciences, 43(1): 593–622. 2015.
Rethinking the Ancient Sulfur Cycle [link]Paper   doi   bibtex   abstract  
  2014 (2)
Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20. Leavitt, W. D.; Cummins, R.; Schmidt, M. L.; Sim, M. S.; Ono, S.; Bradley, A. S.; and Johnston, D. T. Frontiers in Microbiology, 5(November): 1–16. nov 2014.
Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20 [link]Paper   doi   bibtex  
Determination and application of the equilibrium oxygen isotope effect between water and sulfite. Wankel, S. D.; Bradley, A. S.; Eldridge, D. L.; and Johnston, D. T. Geochimica et Cosmochimica Acta, 125: 694–711. jan 2014.
Determination and application of the equilibrium oxygen isotope effect between water and sulfite [link]Paper   doi   bibtex  
  2013 (3)
Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park. Schubotz, F.; Meyer-Dombard, D.; Bradley, A.; Fredricks, H.; Hinrichs, K.; Shock, E.; and Summons, R. Geobiology, 11(6): 549–69. nov 2013.
Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park. [link]Paper   doi   bibtex   abstract  
Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal Field. Lincoln, S. A.; Bradley, A. S.; Newman, S. A.; and Summons, R. E. Organic Geochemistry, 60: 45–53. jul 2013.
Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal Field [link]Paper   doi   bibtex   abstract  
Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Leavitt, W. D.; Halevy, I.; Bradley, A. S.; and Johnston, D. T. Proceedings of the National Academy of Sciences of the United States of America, 110(28): 11244–9. jul 2013.
Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. [link]Paper   doi   bibtex   abstract  
  2011 (2)
Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Wankel, S. D.; Germanovich, L. N.; Lilley, M. D.; Genc, G.; DiPerna, C. J.; Bradley, A. S.; Olson, E. J.; and Girguis, P. R. Nature Geoscience, 4(7): 461–468. jun 2011.
Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids [link]Paper   doi   bibtex  
Revisiting the dissimilatory sulfate reduction pathway. Bradley, A. S.; Leavitt, W. D.; and Johnston, D. T. Geobiology, 9(5): 446–57. sep 2011.
Revisiting the dissimilatory sulfate reduction pathway. [link]Paper   doi   bibtex   abstract  
  2010 (2)
Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis. Bradley, A. S.; Pearson, A.; Sáenz, J. P.; and Marx, C. J. Organic Geochemistry, 41(10): 1075–1081. oct 2010.
Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis [link]Paper   doi   bibtex  
Multiple origins of methane at the Lost City Hydrothermal Field. Bradley, A. S.; and Summons, R. E. Earth and Planetary Science Letters, 297(1-2): 34–41. aug 2010.
Multiple origins of methane at the Lost City Hydrothermal Field [link]Paper   doi   bibtex  
  2009 (6)
Expanding the limits of life. Bradley, A. S Scientific American, 301(6): 62–67. dec 2009.
Expanding the limits of life. [link]Paper   bibtex  
Tubular compression fossils from the Ediacaran Nama Group, Namibia. Cohen, P. A.; Bradley, A. S.; Knoll, A. H.; Grotzinger, J. P.; Jensen, S.; Abelson, J.; Hand, K.; Love, G. D.; Metz, J.; McLoughlin, N.; Meister, P.; Shepard, R.; Tice, M.; and Wilson, J. Journal of Paleontology, 83(1): 110–122. 2009.
Tubular compression fossils from the Ediacaran Nama Group, Namibia [link]Paper   bibtex  
Expanding: The limits of life. Bradley, A. Scientific American, 301(6). 2009.
doi   bibtex  
Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem. Bradley, A. S.; Hayes, J. M.; and Summons, R. E. Geochimica et Cosmochimica Acta, 73(1): 102–118. jan 2009.
Extraordinary 13C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem [link]Paper   doi   bibtex  
Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field. Bradley, A. S.; Fredricks, H.; Hinrichs, K.; and Summons, R. E. Organic Geochemistry, 40(12): 1169–1178. dec 2009.
Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field [link]Paper   doi   bibtex  
Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Love, G. D; Grosjean, E.; Stalvies, C.; Fike, D. A; Grotzinger, J. P; Bradley, A. S; Kelly, A. E; Bhatia, M.; Meredith, W.; Snape, C. E; Bowring, S. a; Condon, D. J; and Summons, R. E Nature, 457(7230): 718–21. feb 2009.
Fossil steroids record the appearance of Demospongiae during the Cryogenian period. [link]Paper   doi   bibtex   abstract  
  2008 (1)
Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri. Londry, K. L.; Dawson, K. G.; Grover, H. D.; Summons, R. E.; and Bradley, A. S. Organic Geochemistry, 39(5): 608–621. may 2008.
Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri [link]Paper   doi   bibtex  
  2007 (1)
Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Martinez, A.; Bradley, A. S.; Waldbauer, J. R.; Summons, R. E.; and DeLong, E. F. Proceedings of the National Academy of Sciences of the United States of America, 104(13): 5590–5595. mar 2007.
Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. [link]Paper   doi   bibtex   abstract  
  2006 (1)
Steroids, triterpenoids and molecular oxygen. Summons, R. E; Bradley, A. S; Jahnke, L. L; and Waldbauer, J. R Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 361(1470): 951–68. jun 2006.
Steroids, triterpenoids and molecular oxygen. [link]Paper   doi   bibtex   abstract  
  2005 (1)
A serpentinite-hosted ecosystem: the Lost City Hydrothermal Field. Kelley, D. S; Karson, J. A; Fru, G. L; Yoerger, D. R; Shank, T. M; Butterfield, D. A; Hayes, J. M; Schrenk, M. O; Olson, E. J; Proskurowski, G.; Jakuba, M.; Bradley, A.; Larson, B.; Ludwig, K.; Glickson, D.; Buckman, K.; Bradley, A. S; Brazelton, W. J; Roe, K.; Bernasconi, S. M; Elend, M. J; Lilley, M. D; Baross, J. A; Summons, R. E; and Sylva, S. P Science, 307(March): 1428–1434. 2005.
A serpentinite-hosted ecosystem: the Lost City Hydrothermal Field [link]Paper   doi   bibtex