Confinement effects in quasi-stoichiometric CeO2 nanoparticles. Herńandez-Alonso, D, M., Hungría, B, A., Martínez-Arias, A., Coronado, M, J., Conesa, C, J., Soria, J., & Ferńandez-García, M. Physical Chemistry Chemical Physics, 6(13):3524--3529, Inst. de Catalisis Y Petroleoquimica, CSIC, C/Marie Curie s/n, Cantoblanco, 28049 Madrid, Spain, 2004.
Confinement effects in quasi-stoichiometric CeO2 nanoparticles [link]Paper  abstract   bibtex   
This paper deals with the analysis of structural and electronic effects of size in quasi-stoichiometric CeO2 nanoparticles prepared by a microemulsion method. The preparation method yields highly controlled materials in terms of particle size distribution and chemical oxidation state, with the presence of Ce(III) species only below an average particle size of ca. 8 nm. The rather low quantity of Ce reduced ions produces marked differences with confinement effects previously reported in the literature. A steady behavior of the fluorite lattice parameter is observed as a function of size in the 5-10 nm range. In this range, the bandgap displays a small decrease of ca. 0.1 eV, with significant differences from the behavior expected on the basis of the effective mass approximation. These structural and electronic properties are rationalized on the basis of the characterization of the materials.
@article{ Hernandez-Alonso2004a,
  abstract = {This paper deals with the analysis of structural and electronic effects of size in quasi-stoichiometric CeO2 nanoparticles prepared by a microemulsion method. The preparation method yields highly controlled materials in terms of particle size distribution and chemical oxidation state, with the presence of Ce(III) species only below an average particle size of ca. 8 nm. The rather low quantity of Ce reduced ions produces marked differences with confinement effects previously reported in the literature. A steady behavior of the fluorite lattice parameter is observed as a function of size in the 5-10 nm range. In this range, the bandgap displays a small decrease of ca. 0.1 eV, with significant differences from the behavior expected on the basis of the effective mass approximation. These structural and electronic properties are rationalized on the basis of the characterization of the materials.},
  address = {Inst. de Catalisis Y Petroleoquimica, CSIC, C/Marie Curie s/n, Cantoblanco, 28049 Madrid, Spain},
  annote = {Cited By (since 1996): 42

Export Date: 15 January 2013

Source: Scopus

CODEN: PPCPF

doi: 10.1039/b403202k

Language of Original Document: English

Correspondence Address: Martínez-Arias, A.; Inst. de Catalisis Y Petroleoquimica, CSIC, C/Marie Curie s/n, Cantoblanco, 28049 Madrid, Spain; email: a.martinez@icp.csic.es

Chemicals/CAS: cerium, 7440-45-1; oxide, 16833-27-5

References: Schermanz, K., (2002) Catalysis by Ceria and Related Materials, , ed. A. Trovarelli, World Sicentific, London, ch. 2; 
Thompson, A.M., (1978) Oxides of Rare Earths, , Wiley, New York; 
Trovarelli, A., (1996) Catal. Rev. Sci. Eng., 38, p. 439; 
Lu, C., Worrell, W.L., Wang, C., Park, S., Kim, H., Vohs, J.M., Gorte, R.J., (2002) Solid State Ionics, 152, p. 393; 
Edlesteijn, A.S., Cammarata, R.C., (1998) Nanomaterials: Synthesis, Properties and Applications, , Institute of Physics Publishing, London; 
Shelef, M., Graham, G.W., (1994) Catal. Rev. Sci. Eng., 36, p. 433; 
Kang, Z.C., Eyring, L., (1990) J. Solid State Chem., 88, p. 303; 
Spanier, J.E., Robinson, R.D., Zhang, F., Chan, S.-W., Herman, I.P., (2001) Phys. Rev. B, 64, p. 245407; 
Zhang, F., Chan, S.-W., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D., Herman, I.P., (2002) Appl. Phys. Lett., 80, p. 127; 
M̈{a}dler, L., Stark, W.J., Pratsinis, S.E., (2002) J. Mater. Res., 17, p. 1356; 
Masui, T., Fujiwara, K., Machida, K., Adachi, G., Sakata, T., Mori, H., (1997) Chem. Mater., 9, p. 2197; 
Zhang, J., Ju, X., Wu, Z.Y., Liu, T., Hu, T.D., Xie, Y.N., Zhang, Z.L., (2001) Chem. Mater., 13, p. 4192; 
Herń{a}ndez-Alonso, M.D., Hungría, A.B., Martínez-Arias, A., Ferń{a}ndez-García, M., Coronado, J.M., Conesa, J.C., Soria, J., (2004) Appl. Catal. B, 50, p. 167; 
Wu, Z., Zhang, J., Benfield, R.E., Ding, Y., Grandjean, D., Zhang, Z., Ju, X., (2002) J. Phys. Chem. B, 106, p. 4569; 
Hirano, M., Kato, E., (1999) J. Am. Ceram. Soc., 82, p. 786; 
Guillou, N., Nistor, L.C., Fuess, H., Hahn, H., (1997) Nanostruct. Mater., 8, p. 545; 
Yin, L., Wang, Y., Pang, G., Koltypin, Y., Gedanken, A., (2002) J. Colloid Interface Sci., 246, p. 78; 
Ferń{a}ndez-Garcia, M., Martínez-Arias, A., Hanson, J.C., Rodriguez, J.A., acceptedCordatos, H., Ford, D., Gorte, R.J., (1996) J. Phys. Chem., 100, p. 18128; 
Tsunekawa, S., Ishikawa, K., Li, Z.Q., Kawazoe, Y., Kasuya, A., (2000) Phys. Rev. Lett., 85, p. 3340; 
Tsunekawa, S., Fukuda, T., Kasuya, A., (2000) J. Appl. Phys., 87, p. 1318; 
Nachmuthu, P., Shih, W.-C., Liu, R.-S., Jang, L.-Y., Chen, J.-M., (2000) J. Solid State Chem., 149, p. 408; 
Suzuki, T., Kosaki, I., Petrovski, V., Anderson, H.U., (2002) J. Appl. Phys., 91, p. 2308; 
Martínez-Arias, A., Ferń{a}ndez-García, M., Ballesteros, V., Salamanca, L.N., Conesa, J.C., Otero, C., Soria, J., (1999) Langmuir, 15, p. 4796; 
Matyi, R.J., Schwartz, L.H., Butt, J.B., (1987) Catal. Rev. Sci. Eng., 29, p. 41; 
Zhou, X.D., Huebner, W., (2001) Appl. Phys. Lett., 79, p. 3512; 
Cammarata, R.C., Sieradki, K., (1989) Phys. Rev. Lett., 62, p. 2005; 
Depero, L.E., Sangaletti, L., Allieri, B., Bontempi, E., Marino, A., Zocchi, M., (1999) J. Cryst. Growth, 198-199, p. 516; 
Ferń{a}ndez-Garcia, M., Martínez-Arias, A., Hungría, A., Iglesias-Juez, A.B., Conesa, J.C., Soria, J., (2002) Phys. Chem. Chem. Phys., 4, p. 2473; 
Rodriguez, J.A., Wang, X., Hanson, J.C., Liu, G., Iglesias-Juez, A., Ferń{a}ndez-García, M., (2003) J. Chem. Phys., 119, p. 5659; 
Spanier, J.E., Robinson, R.D., Zhang, F., Chan, S.-W., Herman, I.P., (2001) Phys. Rev. B, 64, p. 245407; 
Weber, W.H., Hass, K.C., McBride, J.R., (1993) Phys. Rev. B, 48, p. 178; 
McBride, J.R., Hass, K.C., Poindexter, B.D., Weber, W.H., (1994) J. Appl. Phys., 76, p. 2435; 
Richter, H., Wang, Z.P., Ley, L., (1981) Solid State Commun., 39, p. 625; 
Campbell, I.H., Fauchet, P.M., (1986) Solid State Commun., 58, p. 739; 
Kelly, S., Pollak, F.H., Tomkiewicz, M., (1997) J. Phys. Chem. B, 101, p. 2730; 
Doss, C.J., Zallen, R., (1993) Phys. Rev. B, 48, p. 15626; 
Ferń{a}ndez-García, M., (2002) Catal. Rev., 44, p. 59; 
Soldatov, A.V., Ivanchenko, T.S., Della Longa, S., Kotani, A., Iwamoto, Y., Bianconi, A., (1994) Phys. Rev. B, 50, p. 5074; 
Hu, Z., Bertam, S., Kaindl, G., (1994) Phys. Rev. B, 49, p. 39; 
Yofree, A.D., (2001) Adv. Phys., 50, p. 1; 
Uozumi, T., Kayanuma, Y., Yamanaka, K., Edamatu, K., Itoh, T., (1999) Phys. Rev. B, 59, p. 9826; 
Monticone, S., Tufeu, R., Kanaev, A.V., Scolan, E., Sanchez, C., (2000) Appl. Surf. Sci., 162-163, p. 565},
  author = {Herń{a}ndez-Alonso, M D and Hungría, A B and Martínez-Arias, A and Coronado, J M and Conesa, J C and Soria, J and Ferń{a}ndez-García, M},
  issn = {14639076 (ISSN) },
  journal = {Physical Chemistry Chemical Physics},
  keywords = {article,cerium,microemulsion,nanoparticle,oxidation,oxide,particle size,steady state,stoichiometry,structure analysis},
  number = {13},
  pages = {3524--3529},
  title = {{Confinement effects in quasi-stoichiometric CeO2 nanoparticles}},
  url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-3843129722\&partnerID=40\&md5=a4d1530f280477dcaf14acaa8ce8d33f},
  volume = {6},
  year = {2004}
}

Downloads: 0