Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation. Rovira, G, L., Delgado, J, J., Elamrani, K., Del Rio, E., Chen, X., Calvino, J, J., Botana, & J, F. Catalysis Today, 180(1):167--173, Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ćadiz, República Saharaui s/n, 11510 Puerto Real, Ćadiz, Spain, 2012.
Paper abstract bibtex Ceria-praseodimia nanotubes (Ce 0.8Pr 0.2O 2-$δ$-NT) have been synthesized for the first time employing a template-based electrodeposition method inside the pores of anodic aluminum oxide (AAO) membranes. Various electron microscopy techniques such as Field Emission Gun Scanning Electron Microscopy (FEG-SEM), Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field mode (STEM-HAADF), High Resolution Transmision Electron Microscopy (HRTEM), Energy-dispersive X-ray Spectroscopy (X-EDS), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered Transmision Electron Microscopy (EFTEM) have been used to characterise the morphology, structure and chemical composition of the nanotubes. The results indicate that nanotubes are formed by nanocrystals of cerium and praseodymium mixed oxide. Furthermore, the system Ce 0.8Pr 0.2O 2-$δ$-NT/AAO shows a better performance in the CO oxidation reaction than both powdered Ce 0.8Pr 0.2O 2-$δ$ prepared by conventional methods and CeO 2-NT/AAO. These results have been discussed and related to the synergistic effect of doping and nanostructuration of CeO 2. © 2011 Elsevier B.V.
@article{ Rovira2012,
abstract = {Ceria-praseodimia nanotubes (Ce 0.8Pr 0.2O 2-$δ$-NT) have been synthesized for the first time employing a template-based electrodeposition method inside the pores of anodic aluminum oxide (AAO) membranes. Various electron microscopy techniques such as Field Emission Gun Scanning Electron Microscopy (FEG-SEM), Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field mode (STEM-HAADF), High Resolution Transmision Electron Microscopy (HRTEM), Energy-dispersive X-ray Spectroscopy (X-EDS), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered Transmision Electron Microscopy (EFTEM) have been used to characterise the morphology, structure and chemical composition of the nanotubes. The results indicate that nanotubes are formed by nanocrystals of cerium and praseodymium mixed oxide. Furthermore, the system Ce 0.8Pr 0.2O 2-$δ$-NT/AAO shows a better performance in the CO oxidation reaction than both powdered Ce 0.8Pr 0.2O 2-$δ$ prepared by conventional methods and CeO 2-NT/AAO. These results have been discussed and related to the synergistic effect of doping and nanostructuration of CeO 2. © 2011 Elsevier B.V.},
address = {Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ć{a}diz, República Saharaui s/n, 11510 Puerto Real, Ć{a}diz, Spain},
annote = {Cited By (since 1996): 1
Export Date: 28 January 2013
Source: Scopus
CODEN: CATTE
doi: 10.1016/j.cattod.2011.05.006
Language of Original Document: English
Correspondence Address: Botana, F.J.; Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ć{a}diz, República Saharaui s/n, 11510 Puerto Real, Ć{a}diz, Spain; email: Javier.botana@uca.es
References: Aspinall, H.C., (2001) Chemistry of the F-block Elements, , Amsterdam;
Trovarelli, A., (2002) Catalysis by Ceria and Related Materials, , Imperial Collegue Press London;
Kašpar, M.G.J., Fornasiero, P., (2000) Handbook on the Physics and Chemistry of Rare Earth: The Role of Rare Earth in Catalysis, , Springer Berlín;
Campbell, C.T., Peden, C.H.F., Oxygen vacancies and catalysis on ceria surfaces (2005) Science, 309 (5735), pp. 713-714. , DOI 10.1126/science.1113955;
Kaspar, J., Fornasiero, P., Graziani, M., Use of CeO 2-based oxides in the three-way catalysis (1999) Catalysis Today, 50 (2), pp. 285-298. , PII S0920586198005100, Recent Progress in Catalysis by Ceria and Related Compounds;
Xia, C., Liu, M., Low-temperature SOFCs based on Gd 0.1Ce 0.9O 1.95 fabricated by dry pressing (2001) Solid State Ionics, 144 (3-4), pp. 249-255. , DOI 10.1016/S0167-2738(01)00980-8, PII S0167273801009808;
Chen, H.T., Chang, J.G., Chen, H.L., Ju, S.P., Identifying the O 2 diffusion and reduction mechanisms on CeO 2 electrolyte in solid oxide fuel cells: A DFT + U study (2009) Journal of Computational Chemistry, 30, pp. 2433-2442;
Feng, X., Sayle, D.C., Wang, Z.L., Paras, M.S., Santora, B., Sutorik, A.C., Sayle, T.X.T., Her, Y.-S., Converting ceria polyhedral nanoparticles into single-crystal nanospheres (2006) Science, 312 (5779), pp. 1504-1508. , DOI 10.1126/science.1125767;
Zhang, Y.W., Si, R., Liao, C.S., Yan, C.H., Xiao, C.X., Kou, Y., Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals (2003) Journal of Physical Chemistry B, 107, pp. 10159-10167;
Izu, N., Shin, W., Murayama, N., Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder (2003) Sensors and Actuators, B: Chemical, 93, pp. 449-453;
Fu, X.Q., Wang, C., Yu, H.C., Wang, Y.G., Wang, T.H., Fast humidity sensors based on CeO 2 nanowires (2007) Nanotechnology, 18;
Trovarelli, A., Catalytic properties of ceria and CeO 2-Containing materials (1996) Catalysis Reviews - Science and Engineering, 38, pp. 439-520;
Farrauto, R.J., Heck, R.M., Catalytic converters: State of the art and perspectives (1999) Catalysis Today, 51 (3-4), pp. 351-360. , PII S0920586199000243;
Kaspar, J., Fornasiero, P., Hickey, N., Automotive catalytic converters: Current status and some perspectives (2003) Catalysis Today, 77, pp. 419-449;
Kim, C.H., Thompson, L.T., On the importance of nanocrystalline gold for Au/CeO 2 water-gas shift catalysts (2006) Journal of Catalysis, 244 (2), pp. 248-250. , DOI 10.1016/j.jcat.2006.08.018, PII S0021951706003010;
Carrettin, S., Concepcion, P., Corma, A., Lopez Nieto, J.M., Puntes, V.F., Nanocrystalline CeO 2 increases the activity of Au for CO oxidation by two orders of magnitude (2004) Angewandte Chemie - International Edition, 43 (19), pp. 2538-2540. , DOI 10.1002/anie.200353570;
Fu, Q., Deng, W., Saltsburg, H., Flytzani-Stephanopoulos, M., Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction (2005) Applied Catalysis B: Environmental, 56, pp. 57-68;
Goi, D., De Leitenburg, C., Trovarelli, A., Dolcetti, G., Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement (2004) Environmental Technology, 25 (12), pp. 1397-1403;
Blanco, G., Cauqui, M.A., Delgado, J.J., Galtayries, A., Pérez-Omil, J.A., Rodríguez-Izquierdo, J.M., Preparation and characterization of Ce-Mn-O composites with applications in catalytic wet oxidation processes (2004) Surface and Interface Analysis, 36, pp. 752-755;
Mai, H.X., Sun, L.D., Zhang, Y.W., Si, R., Feng, W., Zhang, H.P., Liu, H.C., Yan, C.H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes (2005) Journal of Physical Chemistry B, 109, pp. 24380-2439024385;
Zhou, K., Wang, X., Sun, X., Peng, Q., Li, Y., Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes (2005) Journal of Catalysis, 229, pp. 206-212;
Gonź{a}lez-Rovira, L., Ś{a}nchez-Amaya, J.M., Ĺ{o}pez-Haro, M., Del Rio, E., Hungría, A.B., Midgley, P., Calvino, J.J., Botana, F.J., Single-step process to prepare CeO 2 nanotubes with improved catalytic activity (2009) Nano Letters, 9, pp. 1395-1400;
Xin, Y., Qi, Y., Ma, X., Wang, Z., Zhang, Z., Zhang, S., Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO 2 solid solution nanorods prepared by co-precipitation without surfactants (2010) Materials Letters, 64, pp. 2659-2662;
Chen, Y.C., Chen, K.B., Lee, C.S., Lin, M.C., Direct synthesis of Zr-doped ceria nanotubes (2009) Journal of Physical Chemistry C, 113, pp. 5031-5034;
Yan, L., Xing, X., Yu, R., Qiao, L., Chen, J., Deng, J., Liu, G., Synthesis of Pr-doped ceria nanorods with a high specific surface area (2007) Scripta Materialia, 56 (4), pp. 301-304. , DOI 10.1016/j.scriptamat.2006.09.013, PII S1359646206006841;
Ren, Y., Deng, C., Ai, D., Ma, J., Zan, Q., Kong, J., Xu, J., A facile template-free synthesis of praseodymium-doped ceria nanorods (2010) Key Engineering Materials, pp. 714-716;
Pu, Z.Y., Lu, J.Q., Luo, M.F., Xie, Y.L., Study of oxygen vacancies in Ce 0.9Pr 0.1O 2-$δ$ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy (2007) Journal of Physical Chemistry C, 111, pp. 18695-18702;
Pu, Z.Y., Liu, X.S., Jia, A.P., Xie, Y.L., Lu, J.Q., Luo, M.F., Enhanced activity for CO oxidation over Pr- and Cu-doped CeO 2 catalysts: Effect of oxygen vacancies (2008) Journal of Physical Chemistry C, 112, pp. 15045-15051;
Luo, M.F., Yan, Z.L., Jin, L.Y., Structure and redox properties of Ce xPr 1-xO 2-$δ$ mixed oxides and their catalytic activities for CO, CH 3OH and CH 4 combustion (2006) Journal of Molecular Catalysis A: Chemical, 260, pp. 157-162;
Gonź{a}lez-Rovira, L., Ś{a}nchez-Amaya, J.M., Ĺ{o}pez-Haro, M., Hungria, A.B., Boukha, Z., Bernal, S., Botana, F.J., Formation and characterization of nanotubes of La(OH) 3 obtained using porous alumina membranes (2008) Nanotechnology, 19;
Bocchetta, P., Santamaria, M., Di Quarto, F., Electrosynthesis of Ce-Co mixed oxide nanotubes with high aspect ratio and tunable composition (2008) Electrochemical and Solid-State Letters, 11, pp. 27-K30;
Bocchetta, P., Santamaria, M., Di Quarto, F., From ceria nanotubes to nanowires through electrogeneration of base (2009) Journal of Applied Electrochemistry, 39, pp. 2073-2081;
Egerton, R.F., (1986) Electron Energy-Loss Spectroscopy in the Electron Microscope, , Plenum Press New York;
Bernal, S., Blanco, G., Cauqui, M.A., Martín, A., Pintado, J.M., Galtayries, A., Sporken, R., Oxygen buffering capacity (OBC) of praseodymium-modified CeO 2: Influence of the Pr distribution in the ceria host lattice (2000) Surface and Interface Analysis, 30, pp. 85-89;
Manoubi, T., Colliex, C., Rez, P., Quantitative electron energy loss spectroscopy on M 45 edges in rare earth oxides (1990) Journal of Electron Spectroscopy and Related Phenomena, 50 (1-2), pp. 1-18. , DOI 10.1016/0368-2048(90)80001-Q;
Lopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M.A., Blanco, G., Perez-Omil, J.A., Pintado, J.M., Hansen, P.L., In situ transmission electron microscopy investigation of Ce(IV) and Pr(IV) reducibility in a Rh (1%)/Ce 0.8Pr 0.2O 2-x catalyst (2003) Chemical Communications, (5), pp. 644-645;
Rodríguez-Luque, M.P., Herń{a}ndez, J.C., Yeste, M.P., Bernal, S., Cauqui, M.A., Pintado, J.M., Pérez-Omil, J.A., Trasobares, S., Preparation of rhodium/Ce xPr 1-xO 2 catalysts: A nanostructural and nanoanalytical investigation of surface modifications by transmission and scanning-transmission electron microscopy (2008) Journal of Physical Chemistry C, 112, pp. 5900-5910;
Song, Z., Liu, W., Nishiguchi, H., Takami, A., Nagaoka, K., Takita, Y., The Pr promotion effect on oxygen storage capacity of Ce-Pr oxides studied using a TAP reactor (2007) Applied Catalysis A: General, 329, pp. 86-92. , DOI 10.1016/j.apcata.2007.06.023, PII S0926860X07003924;
Reddy, B.M., Thrimurthulu, G., Katta, L., Yamada, Y., Park, S.E., Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions (2009) Journal of Physical Chemistry C, 113, pp. 15882-15890;
Kang, Z.C., Eyring, L., Lattice oxygen transfer in fluorite-type oxides containing Ce, Pr, and/or Tb (2000) Journal of Solid State Chemistry, 155, pp. 129-137;
Wu, X.N., Zhao, Y.X., Xue, W., Wang, Z.C., He, S.G., Ding, X.L., Active sites of stoichiometric cerium oxide cations (Ce mO 2m +) probed by reactions with carbon monoxide and small hydrocarbon molecules (2010) Physical Chemistry Chemical Physics, 12, pp. 3984-3997;
Pan, C., Zhang, D., Shi, L., CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO 2 nanoplates, nanotubes, and nanorods (2008) Journal of Solid State Chemistry, 181, pp. 1298-1306},
author = {Rovira, L G and Delgado, J J and Elamrani, K and {Del Rio}, E and Chen, X and Calvino, J J and Botana, F J},
issn = {09205861 (ISSN)},
journal = {Catalysis Today},
keywords = {Anodic aluminum oxide membranes,Anodic oxidation,CO oxidation,Catalyst activity,Catalytic oxidation,Cerium,Cerium compounds,Chemical compositions,Conventional methods,Dark-field,Electrodeposition,Electrodeposition methods,Electron energy loss spectroscopy,Electrons,Energy dispersive spectroscopy,Energy dispersive x-ray spectroscopy,Energy dissipation,FEG-SEM,Field emission guns,High resolution transmission electron microscopy,High-resolution Transmision electron microscopies,Microscopy technique,Mixed oxide,Nano structuration,Nanotube,Nanotubes,Praseodymium,STEM-HAADF,Scanning electron microscopy,Scanning transmission electron microscopy,Synergistic effect,Synthesis (chemical),Template-based,Template-based electrodeposition,Transmission electron microscopy},
number = {1},
pages = {167--173},
title = {{Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation}},
url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\&partnerID=40\&md5=0041101285fe751bf95e73df18e98f33},
volume = {180},
year = {2012}
}
Downloads: 0
{"_id":{"_str":"51f639ca59ced8df4400052c"},"__v":2,"authorIDs":[],"author_short":["Rovira","G, L.","Delgado","J, J.","Elamrani, K.","Del Rio, E.","Chen, X.","Calvino","J, J.","Botana","J, F."],"bibbaseid":"-g--j-elamrani-delrio-chen--j--j-synthesisofceriapraseodimiananotubeswithhighcatalyticactivityforcooxidation-2012","bibdata":{"html":"<div class=\"bibbase_paper\"> \n\n\n<span class=\"bibbase_paper_titleauthoryear\">\n\t<span class=\"bibbase_paper_title\"><a name=\"Rovira2012\"> </a>Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation.</span>\n\t<span class=\"bibbase_paper_author\">\nRovira; G, L.; Delgado; J, J.; Elamrani, K.; Del Rio, E.; Chen, X.; Calvino; J, J.; Botana; and J, F.</span>\n\t<!-- <span class=\"bibbase_paper_year\">2012</span>. -->\n</span>\n\n\n\n<i>Catalysis Today</i>,\n\n180(1):167--173.\n\n 2012.\n\n\n\n\n<br class=\"bibbase_paper_content\"/>\n\n<span class=\"bibbase_paper_content\">\n \n \n <!-- <i -->\n <!-- onclick=\"javascript:log_download('-g--j-elamrani-delrio-chen--j--j-synthesisofceriapraseodimiananotubeswithhighcatalyticactivityforcooxidation-2012', 'https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33')\">DEBUG -->\n <!-- </i> -->\n\n <a href=\"https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33\"\n onclick=\"javascript:log_download('-g--j-elamrani-delrio-chen--j--j-synthesisofceriapraseodimiananotubeswithhighcatalyticactivityforcooxidation-2012', 'https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33')\">\n <img src=\"http://www.bibbase.org/img/filetypes/blank.png\"\n\t alt=\"Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation [.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33]\" \n\t class=\"bibbase_icon\"\n\t style=\"width: 24px; height: 24px; border: 0px; vertical-align: text-top\" ><span class=\"bibbase_icon_text\">Paper</span></a> \n \n \n \n <a href=\"javascript:showBib('Rovira2012')\"\n class=\"bibbase link\">\n <!-- <img src=\"http://www.bibbase.org/img/filetypes/bib.png\" -->\n\t<!-- alt=\"Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation [bib]\" -->\n\t<!-- class=\"bibbase_icon\" -->\n\t<!-- style=\"width: 24px; height: 24px; border: 0px; vertical-align: text-top\"><span class=\"bibbase_icon_text\">Bibtex</span> -->\n BibTeX\n <i class=\"fa fa-caret-down\"></i></a>\n \n \n \n <a class=\"bibbase_abstract_link bibbase link\"\n href=\"javascript:showAbstract('Rovira2012')\">\n Abstract\n <i class=\"fa fa-caret-down\"></i></a>\n \n \n \n\n \n \n \n</span>\n\n<div class=\"well well-small bibbase\" id=\"bib_Rovira2012\"\n style=\"display:none\">\n <pre>@article{ Rovira2012,\n abstract = {Ceria-praseodimia nanotubes (Ce 0.8Pr 0.2O 2-$δ$-NT) have been synthesized for the first time employing a template-based electrodeposition method inside the pores of anodic aluminum oxide (AAO) membranes. Various electron microscopy techniques such as Field Emission Gun Scanning Electron Microscopy (FEG-SEM), Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field mode (STEM-HAADF), High Resolution Transmision Electron Microscopy (HRTEM), Energy-dispersive X-ray Spectroscopy (X-EDS), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered Transmision Electron Microscopy (EFTEM) have been used to characterise the morphology, structure and chemical composition of the nanotubes. The results indicate that nanotubes are formed by nanocrystals of cerium and praseodymium mixed oxide. Furthermore, the system Ce 0.8Pr 0.2O 2-$δ$-NT/AAO shows a better performance in the CO oxidation reaction than both powdered Ce 0.8Pr 0.2O 2-$δ$ prepared by conventional methods and CeO 2-NT/AAO. These results have been discussed and related to the synergistic effect of doping and nanostructuration of CeO 2. © 2011 Elsevier B.V.},\n address = {Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ć{a}diz, República Saharaui s/n, 11510 Puerto Real, Ć{a}diz, Spain},\n annote = {Cited By (since 1996): 1\n \nExport Date: 28 January 2013\n \nSource: Scopus\n \nCODEN: CATTE\n \ndoi: 10.1016/j.cattod.2011.05.006\n \nLanguage of Original Document: English\n \nCorrespondence Address: Botana, F.J.; Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ć{a}diz, República Saharaui s/n, 11510 Puerto Real, Ć{a}diz, Spain; email: Javier.botana@uca.es\n \nReferences: Aspinall, H.C., (2001) Chemistry of the F-block Elements, , Amsterdam; \nTrovarelli, A., (2002) Catalysis by Ceria and Related Materials, , Imperial Collegue Press London; \nKašpar, M.G.J., Fornasiero, P., (2000) Handbook on the Physics and Chemistry of Rare Earth: The Role of Rare Earth in Catalysis, , Springer Berlín; \nCampbell, C.T., Peden, C.H.F., Oxygen vacancies and catalysis on ceria surfaces (2005) Science, 309 (5735), pp. 713-714. , DOI 10.1126/science.1113955; \nKaspar, J., Fornasiero, P., Graziani, M., Use of CeO 2-based oxides in the three-way catalysis (1999) Catalysis Today, 50 (2), pp. 285-298. , PII S0920586198005100, Recent Progress in Catalysis by Ceria and Related Compounds; \nXia, C., Liu, M., Low-temperature SOFCs based on Gd 0.1Ce 0.9O 1.95 fabricated by dry pressing (2001) Solid State Ionics, 144 (3-4), pp. 249-255. , DOI 10.1016/S0167-2738(01)00980-8, PII S0167273801009808; \nChen, H.T., Chang, J.G., Chen, H.L., Ju, S.P., Identifying the O 2 diffusion and reduction mechanisms on CeO 2 electrolyte in solid oxide fuel cells: A DFT + U study (2009) Journal of Computational Chemistry, 30, pp. 2433-2442; \nFeng, X., Sayle, D.C., Wang, Z.L., Paras, M.S., Santora, B., Sutorik, A.C., Sayle, T.X.T., Her, Y.-S., Converting ceria polyhedral nanoparticles into single-crystal nanospheres (2006) Science, 312 (5779), pp. 1504-1508. , DOI 10.1126/science.1125767; \nZhang, Y.W., Si, R., Liao, C.S., Yan, C.H., Xiao, C.X., Kou, Y., Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals (2003) Journal of Physical Chemistry B, 107, pp. 10159-10167; \nIzu, N., Shin, W., Murayama, N., Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder (2003) Sensors and Actuators, B: Chemical, 93, pp. 449-453; \nFu, X.Q., Wang, C., Yu, H.C., Wang, Y.G., Wang, T.H., Fast humidity sensors based on CeO 2 nanowires (2007) Nanotechnology, 18; \nTrovarelli, A., Catalytic properties of ceria and CeO 2-Containing materials (1996) Catalysis Reviews - Science and Engineering, 38, pp. 439-520; \nFarrauto, R.J., Heck, R.M., Catalytic converters: State of the art and perspectives (1999) Catalysis Today, 51 (3-4), pp. 351-360. , PII S0920586199000243; \nKaspar, J., Fornasiero, P., Hickey, N., Automotive catalytic converters: Current status and some perspectives (2003) Catalysis Today, 77, pp. 419-449; \nKim, C.H., Thompson, L.T., On the importance of nanocrystalline gold for Au/CeO 2 water-gas shift catalysts (2006) Journal of Catalysis, 244 (2), pp. 248-250. , DOI 10.1016/j.jcat.2006.08.018, PII S0021951706003010; \nCarrettin, S., Concepcion, P., Corma, A., Lopez Nieto, J.M., Puntes, V.F., Nanocrystalline CeO 2 increases the activity of Au for CO oxidation by two orders of magnitude (2004) Angewandte Chemie - International Edition, 43 (19), pp. 2538-2540. , DOI 10.1002/anie.200353570; \nFu, Q., Deng, W., Saltsburg, H., Flytzani-Stephanopoulos, M., Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction (2005) Applied Catalysis B: Environmental, 56, pp. 57-68; \nGoi, D., De Leitenburg, C., Trovarelli, A., Dolcetti, G., Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement (2004) Environmental Technology, 25 (12), pp. 1397-1403; \nBlanco, G., Cauqui, M.A., Delgado, J.J., Galtayries, A., Pérez-Omil, J.A., Rodríguez-Izquierdo, J.M., Preparation and characterization of Ce-Mn-O composites with applications in catalytic wet oxidation processes (2004) Surface and Interface Analysis, 36, pp. 752-755; \nMai, H.X., Sun, L.D., Zhang, Y.W., Si, R., Feng, W., Zhang, H.P., Liu, H.C., Yan, C.H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes (2005) Journal of Physical Chemistry B, 109, pp. 24380-2439024385; \nZhou, K., Wang, X., Sun, X., Peng, Q., Li, Y., Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes (2005) Journal of Catalysis, 229, pp. 206-212; \nGonź{a}lez-Rovira, L., Ś{a}nchez-Amaya, J.M., Ĺ{o}pez-Haro, M., Del Rio, E., Hungría, A.B., Midgley, P., Calvino, J.J., Botana, F.J., Single-step process to prepare CeO 2 nanotubes with improved catalytic activity (2009) Nano Letters, 9, pp. 1395-1400; \nXin, Y., Qi, Y., Ma, X., Wang, Z., Zhang, Z., Zhang, S., Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO 2 solid solution nanorods prepared by co-precipitation without surfactants (2010) Materials Letters, 64, pp. 2659-2662; \nChen, Y.C., Chen, K.B., Lee, C.S., Lin, M.C., Direct synthesis of Zr-doped ceria nanotubes (2009) Journal of Physical Chemistry C, 113, pp. 5031-5034; \nYan, L., Xing, X., Yu, R., Qiao, L., Chen, J., Deng, J., Liu, G., Synthesis of Pr-doped ceria nanorods with a high specific surface area (2007) Scripta Materialia, 56 (4), pp. 301-304. , DOI 10.1016/j.scriptamat.2006.09.013, PII S1359646206006841; \nRen, Y., Deng, C., Ai, D., Ma, J., Zan, Q., Kong, J., Xu, J., A facile template-free synthesis of praseodymium-doped ceria nanorods (2010) Key Engineering Materials, pp. 714-716; \nPu, Z.Y., Lu, J.Q., Luo, M.F., Xie, Y.L., Study of oxygen vacancies in Ce 0.9Pr 0.1O 2-$δ$ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy (2007) Journal of Physical Chemistry C, 111, pp. 18695-18702; \nPu, Z.Y., Liu, X.S., Jia, A.P., Xie, Y.L., Lu, J.Q., Luo, M.F., Enhanced activity for CO oxidation over Pr- and Cu-doped CeO 2 catalysts: Effect of oxygen vacancies (2008) Journal of Physical Chemistry C, 112, pp. 15045-15051; \nLuo, M.F., Yan, Z.L., Jin, L.Y., Structure and redox properties of Ce xPr 1-xO 2-$δ$ mixed oxides and their catalytic activities for CO, CH 3OH and CH 4 combustion (2006) Journal of Molecular Catalysis A: Chemical, 260, pp. 157-162; \nGonź{a}lez-Rovira, L., Ś{a}nchez-Amaya, J.M., Ĺ{o}pez-Haro, M., Hungria, A.B., Boukha, Z., Bernal, S., Botana, F.J., Formation and characterization of nanotubes of La(OH) 3 obtained using porous alumina membranes (2008) Nanotechnology, 19; \nBocchetta, P., Santamaria, M., Di Quarto, F., Electrosynthesis of Ce-Co mixed oxide nanotubes with high aspect ratio and tunable composition (2008) Electrochemical and Solid-State Letters, 11, pp. 27-K30; \nBocchetta, P., Santamaria, M., Di Quarto, F., From ceria nanotubes to nanowires through electrogeneration of base (2009) Journal of Applied Electrochemistry, 39, pp. 2073-2081; \nEgerton, R.F., (1986) Electron Energy-Loss Spectroscopy in the Electron Microscope, , Plenum Press New York; \nBernal, S., Blanco, G., Cauqui, M.A., Martín, A., Pintado, J.M., Galtayries, A., Sporken, R., Oxygen buffering capacity (OBC) of praseodymium-modified CeO 2: Influence of the Pr distribution in the ceria host lattice (2000) Surface and Interface Analysis, 30, pp. 85-89; \nManoubi, T., Colliex, C., Rez, P., Quantitative electron energy loss spectroscopy on M 45 edges in rare earth oxides (1990) Journal of Electron Spectroscopy and Related Phenomena, 50 (1-2), pp. 1-18. , DOI 10.1016/0368-2048(90)80001-Q; \nLopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M.A., Blanco, G., Perez-Omil, J.A., Pintado, J.M., Hansen, P.L., In situ transmission electron microscopy investigation of Ce(IV) and Pr(IV) reducibility in a Rh (1%)/Ce 0.8Pr 0.2O 2-x catalyst (2003) Chemical Communications, (5), pp. 644-645; \nRodríguez-Luque, M.P., Herń{a}ndez, J.C., Yeste, M.P., Bernal, S., Cauqui, M.A., Pintado, J.M., Pérez-Omil, J.A., Trasobares, S., Preparation of rhodium/Ce xPr 1-xO 2 catalysts: A nanostructural and nanoanalytical investigation of surface modifications by transmission and scanning-transmission electron microscopy (2008) Journal of Physical Chemistry C, 112, pp. 5900-5910; \nSong, Z., Liu, W., Nishiguchi, H., Takami, A., Nagaoka, K., Takita, Y., The Pr promotion effect on oxygen storage capacity of Ce-Pr oxides studied using a TAP reactor (2007) Applied Catalysis A: General, 329, pp. 86-92. , DOI 10.1016/j.apcata.2007.06.023, PII S0926860X07003924; \nReddy, B.M., Thrimurthulu, G., Katta, L., Yamada, Y., Park, S.E., Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions (2009) Journal of Physical Chemistry C, 113, pp. 15882-15890; \nKang, Z.C., Eyring, L., Lattice oxygen transfer in fluorite-type oxides containing Ce, Pr, and/or Tb (2000) Journal of Solid State Chemistry, 155, pp. 129-137; \nWu, X.N., Zhao, Y.X., Xue, W., Wang, Z.C., He, S.G., Ding, X.L., Active sites of stoichiometric cerium oxide cations (Ce mO 2m +) probed by reactions with carbon monoxide and small hydrocarbon molecules (2010) Physical Chemistry Chemical Physics, 12, pp. 3984-3997; \nPan, C., Zhang, D., Shi, L., CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO 2 nanoplates, nanotubes, and nanorods (2008) Journal of Solid State Chemistry, 181, pp. 1298-1306},\n author = {Rovira, L G and Delgado, J J and Elamrani, K and {Del Rio}, E and Chen, X and Calvino, J J and Botana, F J},\n issn = {09205861 (ISSN)},\n journal = {Catalysis Today},\n keywords = {Anodic aluminum oxide membranes,Anodic oxidation,CO oxidation,Catalyst activity,Catalytic oxidation,Cerium,Cerium compounds,Chemical compositions,Conventional methods,Dark-field,Electrodeposition,Electrodeposition methods,Electron energy loss spectroscopy,Electrons,Energy dispersive spectroscopy,Energy dispersive x-ray spectroscopy,Energy dissipation,FEG-SEM,Field emission guns,High resolution transmission electron microscopy,High-resolution Transmision electron microscopies,Microscopy technique,Mixed oxide,Nano structuration,Nanotube,Nanotubes,Praseodymium,STEM-HAADF,Scanning electron microscopy,Scanning transmission electron microscopy,Synergistic effect,Synthesis (chemical),Template-based,Template-based electrodeposition,Transmission electron microscopy},\n number = {1},\n pages = {167--173},\n title = {{Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation}},\n url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33},\n volume = {180},\n year = {2012}\n}</pre>\n</div>\n\n\n<div class=\"well well-small bibbase\" id=\"abstract_Rovira2012\"\n style=\"display:none\">\n Ceria-praseodimia nanotubes (Ce 0.8Pr 0.2O 2-$δ$-NT) have been synthesized for the first time employing a template-based electrodeposition method inside the pores of anodic aluminum oxide (AAO) membranes. Various electron microscopy techniques such as Field Emission Gun Scanning Electron Microscopy (FEG-SEM), Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field mode (STEM-HAADF), High Resolution Transmision Electron Microscopy (HRTEM), Energy-dispersive X-ray Spectroscopy (X-EDS), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered Transmision Electron Microscopy (EFTEM) have been used to characterise the morphology, structure and chemical composition of the nanotubes. The results indicate that nanotubes are formed by nanocrystals of cerium and praseodymium mixed oxide. Furthermore, the system Ce 0.8Pr 0.2O 2-$δ$-NT/AAO shows a better performance in the CO oxidation reaction than both powdered Ce 0.8Pr 0.2O 2-$δ$ prepared by conventional methods and CeO 2-NT/AAO. These results have been discussed and related to the synergistic effect of doping and nanostructuration of CeO 2. © 2011 Elsevier B.V.\n</div>\n\n\n</div>\n","downloads":0,"keyword":["Anodic aluminum oxide membranes","Anodic oxidation","CO oxidation","Catalyst activity","Catalytic oxidation","Cerium","Cerium compounds","Chemical compositions","Conventional methods","Dark-field","Electrodeposition","Electrodeposition methods","Electron energy loss spectroscopy","Electrons","Energy dispersive spectroscopy","Energy dispersive x-ray spectroscopy","Energy dissipation","FEG-SEM","Field emission guns","High resolution transmission electron microscopy","High-resolution Transmision electron microscopies","Microscopy technique","Mixed oxide","Nano structuration","Nanotube","Nanotubes","Praseodymium","STEM-HAADF","Scanning electron microscopy","Scanning transmission electron microscopy","Synergistic effect","Synthesis (chemical)","Template-based","Template-based electrodeposition","Transmission electron microscopy"],"abstract":"Ceria-praseodimia nanotubes (Ce 0.8Pr 0.2O 2-$δ$-NT) have been synthesized for the first time employing a template-based electrodeposition method inside the pores of anodic aluminum oxide (AAO) membranes. Various electron microscopy techniques such as Field Emission Gun Scanning Electron Microscopy (FEG-SEM), Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field mode (STEM-HAADF), High Resolution Transmision Electron Microscopy (HRTEM), Energy-dispersive X-ray Spectroscopy (X-EDS), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered Transmision Electron Microscopy (EFTEM) have been used to characterise the morphology, structure and chemical composition of the nanotubes. The results indicate that nanotubes are formed by nanocrystals of cerium and praseodymium mixed oxide. Furthermore, the system Ce 0.8Pr 0.2O 2-$δ$-NT/AAO shows a better performance in the CO oxidation reaction than both powdered Ce 0.8Pr 0.2O 2-$δ$ prepared by conventional methods and CeO 2-NT/AAO. These results have been discussed and related to the synergistic effect of doping and nanostructuration of CeO 2. © 2011 Elsevier B.V.","address":"Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ćadiz, República Saharaui s/n, 11510 Puerto Real, Ćadiz, Spain","annote":"Cited By (since 1996): 1 Export Date: 28 January 2013 Source: Scopus CODEN: CATTE doi: 10.1016/j.cattod.2011.05.006 Language of Original Document: English Correspondence Address: Botana, F.J.; Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ćadiz, República Saharaui s/n, 11510 Puerto Real, Ćadiz, Spain; email: Javier.botana@uca.es References: Aspinall, H.C., (2001) Chemistry of the F-block Elements, , Amsterdam; Trovarelli, A., (2002) Catalysis by Ceria and Related Materials, , Imperial Collegue Press London; Kašpar, M.G.J., Fornasiero, P., (2000) Handbook on the Physics and Chemistry of Rare Earth: The Role of Rare Earth in Catalysis, , Springer Berlín; Campbell, C.T., Peden, C.H.F., Oxygen vacancies and catalysis on ceria surfaces (2005) Science, 309 (5735), pp. 713-714. , DOI 10.1126/science.1113955; Kaspar, J., Fornasiero, P., Graziani, M., Use of CeO 2-based oxides in the three-way catalysis (1999) Catalysis Today, 50 (2), pp. 285-298. , PII S0920586198005100, Recent Progress in Catalysis by Ceria and Related Compounds; Xia, C., Liu, M., Low-temperature SOFCs based on Gd 0.1Ce 0.9O 1.95 fabricated by dry pressing (2001) Solid State Ionics, 144 (3-4), pp. 249-255. , DOI 10.1016/S0167-2738(01)00980-8, PII S0167273801009808; Chen, H.T., Chang, J.G., Chen, H.L., Ju, S.P., Identifying the O 2 diffusion and reduction mechanisms on CeO 2 electrolyte in solid oxide fuel cells: A DFT + U study (2009) Journal of Computational Chemistry, 30, pp. 2433-2442; Feng, X., Sayle, D.C., Wang, Z.L., Paras, M.S., Santora, B., Sutorik, A.C., Sayle, T.X.T., Her, Y.-S., Converting ceria polyhedral nanoparticles into single-crystal nanospheres (2006) Science, 312 (5779), pp. 1504-1508. , DOI 10.1126/science.1125767; Zhang, Y.W., Si, R., Liao, C.S., Yan, C.H., Xiao, C.X., Kou, Y., Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals (2003) Journal of Physical Chemistry B, 107, pp. 10159-10167; Izu, N., Shin, W., Murayama, N., Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder (2003) Sensors and Actuators, B: Chemical, 93, pp. 449-453; Fu, X.Q., Wang, C., Yu, H.C., Wang, Y.G., Wang, T.H., Fast humidity sensors based on CeO 2 nanowires (2007) Nanotechnology, 18; Trovarelli, A., Catalytic properties of ceria and CeO 2-Containing materials (1996) Catalysis Reviews - Science and Engineering, 38, pp. 439-520; Farrauto, R.J., Heck, R.M., Catalytic converters: State of the art and perspectives (1999) Catalysis Today, 51 (3-4), pp. 351-360. , PII S0920586199000243; Kaspar, J., Fornasiero, P., Hickey, N., Automotive catalytic converters: Current status and some perspectives (2003) Catalysis Today, 77, pp. 419-449; Kim, C.H., Thompson, L.T., On the importance of nanocrystalline gold for Au/CeO 2 water-gas shift catalysts (2006) Journal of Catalysis, 244 (2), pp. 248-250. , DOI 10.1016/j.jcat.2006.08.018, PII S0021951706003010; Carrettin, S., Concepcion, P., Corma, A., Lopez Nieto, J.M., Puntes, V.F., Nanocrystalline CeO 2 increases the activity of Au for CO oxidation by two orders of magnitude (2004) Angewandte Chemie - International Edition, 43 (19), pp. 2538-2540. , DOI 10.1002/anie.200353570; Fu, Q., Deng, W., Saltsburg, H., Flytzani-Stephanopoulos, M., Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction (2005) Applied Catalysis B: Environmental, 56, pp. 57-68; Goi, D., De Leitenburg, C., Trovarelli, A., Dolcetti, G., Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement (2004) Environmental Technology, 25 (12), pp. 1397-1403; Blanco, G., Cauqui, M.A., Delgado, J.J., Galtayries, A., Pérez-Omil, J.A., Rodríguez-Izquierdo, J.M., Preparation and characterization of Ce-Mn-O composites with applications in catalytic wet oxidation processes (2004) Surface and Interface Analysis, 36, pp. 752-755; Mai, H.X., Sun, L.D., Zhang, Y.W., Si, R., Feng, W., Zhang, H.P., Liu, H.C., Yan, C.H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes (2005) Journal of Physical Chemistry B, 109, pp. 24380-2439024385; Zhou, K., Wang, X., Sun, X., Peng, Q., Li, Y., Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes (2005) Journal of Catalysis, 229, pp. 206-212; Gonźalez-Rovira, L., Śanchez-Amaya, J.M., Ĺopez-Haro, M., Del Rio, E., Hungría, A.B., Midgley, P., Calvino, J.J., Botana, F.J., Single-step process to prepare CeO 2 nanotubes with improved catalytic activity (2009) Nano Letters, 9, pp. 1395-1400; Xin, Y., Qi, Y., Ma, X., Wang, Z., Zhang, Z., Zhang, S., Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO 2 solid solution nanorods prepared by co-precipitation without surfactants (2010) Materials Letters, 64, pp. 2659-2662; Chen, Y.C., Chen, K.B., Lee, C.S., Lin, M.C., Direct synthesis of Zr-doped ceria nanotubes (2009) Journal of Physical Chemistry C, 113, pp. 5031-5034; Yan, L., Xing, X., Yu, R., Qiao, L., Chen, J., Deng, J., Liu, G., Synthesis of Pr-doped ceria nanorods with a high specific surface area (2007) Scripta Materialia, 56 (4), pp. 301-304. , DOI 10.1016/j.scriptamat.2006.09.013, PII S1359646206006841; Ren, Y., Deng, C., Ai, D., Ma, J., Zan, Q., Kong, J., Xu, J., A facile template-free synthesis of praseodymium-doped ceria nanorods (2010) Key Engineering Materials, pp. 714-716; Pu, Z.Y., Lu, J.Q., Luo, M.F., Xie, Y.L., Study of oxygen vacancies in Ce 0.9Pr 0.1O 2-$δ$ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy (2007) Journal of Physical Chemistry C, 111, pp. 18695-18702; Pu, Z.Y., Liu, X.S., Jia, A.P., Xie, Y.L., Lu, J.Q., Luo, M.F., Enhanced activity for CO oxidation over Pr- and Cu-doped CeO 2 catalysts: Effect of oxygen vacancies (2008) Journal of Physical Chemistry C, 112, pp. 15045-15051; Luo, M.F., Yan, Z.L., Jin, L.Y., Structure and redox properties of Ce xPr 1-xO 2-$δ$ mixed oxides and their catalytic activities for CO, CH 3OH and CH 4 combustion (2006) Journal of Molecular Catalysis A: Chemical, 260, pp. 157-162; Gonźalez-Rovira, L., Śanchez-Amaya, J.M., Ĺopez-Haro, M., Hungria, A.B., Boukha, Z., Bernal, S., Botana, F.J., Formation and characterization of nanotubes of La(OH) 3 obtained using porous alumina membranes (2008) Nanotechnology, 19; Bocchetta, P., Santamaria, M., Di Quarto, F., Electrosynthesis of Ce-Co mixed oxide nanotubes with high aspect ratio and tunable composition (2008) Electrochemical and Solid-State Letters, 11, pp. 27-K30; Bocchetta, P., Santamaria, M., Di Quarto, F., From ceria nanotubes to nanowires through electrogeneration of base (2009) Journal of Applied Electrochemistry, 39, pp. 2073-2081; Egerton, R.F., (1986) Electron Energy-Loss Spectroscopy in the Electron Microscope, , Plenum Press New York; Bernal, S., Blanco, G., Cauqui, M.A., Martín, A., Pintado, J.M., Galtayries, A., Sporken, R., Oxygen buffering capacity (OBC) of praseodymium-modified CeO 2: Influence of the Pr distribution in the ceria host lattice (2000) Surface and Interface Analysis, 30, pp. 85-89; Manoubi, T., Colliex, C., Rez, P., Quantitative electron energy loss spectroscopy on M 45 edges in rare earth oxides (1990) Journal of Electron Spectroscopy and Related Phenomena, 50 (1-2), pp. 1-18. , DOI 10.1016/0368-2048(90)80001-Q; Lopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M.A., Blanco, G., Perez-Omil, J.A., Pintado, J.M., Hansen, P.L., In situ transmission electron microscopy investigation of Ce(IV) and Pr(IV) reducibility in a Rh (1%)/Ce 0.8Pr 0.2O 2-x catalyst (2003) Chemical Communications, (5), pp. 644-645; Rodríguez-Luque, M.P., Herńandez, J.C., Yeste, M.P., Bernal, S., Cauqui, M.A., Pintado, J.M., Pérez-Omil, J.A., Trasobares, S., Preparation of rhodium/Ce xPr 1-xO 2 catalysts: A nanostructural and nanoanalytical investigation of surface modifications by transmission and scanning-transmission electron microscopy (2008) Journal of Physical Chemistry C, 112, pp. 5900-5910; Song, Z., Liu, W., Nishiguchi, H., Takami, A., Nagaoka, K., Takita, Y., The Pr promotion effect on oxygen storage capacity of Ce-Pr oxides studied using a TAP reactor (2007) Applied Catalysis A: General, 329, pp. 86-92. , DOI 10.1016/j.apcata.2007.06.023, PII S0926860X07003924; Reddy, B.M., Thrimurthulu, G., Katta, L., Yamada, Y., Park, S.E., Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions (2009) Journal of Physical Chemistry C, 113, pp. 15882-15890; Kang, Z.C., Eyring, L., Lattice oxygen transfer in fluorite-type oxides containing Ce, Pr, and/or Tb (2000) Journal of Solid State Chemistry, 155, pp. 129-137; Wu, X.N., Zhao, Y.X., Xue, W., Wang, Z.C., He, S.G., Ding, X.L., Active sites of stoichiometric cerium oxide cations (Ce mO 2m +) probed by reactions with carbon monoxide and small hydrocarbon molecules (2010) Physical Chemistry Chemical Physics, 12, pp. 3984-3997; Pan, C., Zhang, D., Shi, L., CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO 2 nanoplates, nanotubes, and nanorods (2008) Journal of Solid State Chemistry, 181, pp. 1298-1306","author":["Rovira","G, L","Delgado","J, J","Elamrani, K","Del Rio, E","Chen, X","Calvino","J, J","Botana","J, F"],"author_short":["Rovira","G, L.","Delgado","J, J.","Elamrani, K.","Del Rio, E.","Chen, X.","Calvino","J, J.","Botana","J, F."],"bibtex":"@article{ Rovira2012,\n abstract = {Ceria-praseodimia nanotubes (Ce 0.8Pr 0.2O 2-$δ$-NT) have been synthesized for the first time employing a template-based electrodeposition method inside the pores of anodic aluminum oxide (AAO) membranes. Various electron microscopy techniques such as Field Emission Gun Scanning Electron Microscopy (FEG-SEM), Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field mode (STEM-HAADF), High Resolution Transmision Electron Microscopy (HRTEM), Energy-dispersive X-ray Spectroscopy (X-EDS), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered Transmision Electron Microscopy (EFTEM) have been used to characterise the morphology, structure and chemical composition of the nanotubes. The results indicate that nanotubes are formed by nanocrystals of cerium and praseodymium mixed oxide. Furthermore, the system Ce 0.8Pr 0.2O 2-$δ$-NT/AAO shows a better performance in the CO oxidation reaction than both powdered Ce 0.8Pr 0.2O 2-$δ$ prepared by conventional methods and CeO 2-NT/AAO. These results have been discussed and related to the synergistic effect of doping and nanostructuration of CeO 2. © 2011 Elsevier B.V.},\n address = {Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ć{a}diz, República Saharaui s/n, 11510 Puerto Real, Ć{a}diz, Spain},\n annote = {Cited By (since 1996): 1\n \nExport Date: 28 January 2013\n \nSource: Scopus\n \nCODEN: CATTE\n \ndoi: 10.1016/j.cattod.2011.05.006\n \nLanguage of Original Document: English\n \nCorrespondence Address: Botana, F.J.; Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, University of Ć{a}diz, República Saharaui s/n, 11510 Puerto Real, Ć{a}diz, Spain; email: Javier.botana@uca.es\n \nReferences: Aspinall, H.C., (2001) Chemistry of the F-block Elements, , Amsterdam; \nTrovarelli, A., (2002) Catalysis by Ceria and Related Materials, , Imperial Collegue Press London; \nKašpar, M.G.J., Fornasiero, P., (2000) Handbook on the Physics and Chemistry of Rare Earth: The Role of Rare Earth in Catalysis, , Springer Berlín; \nCampbell, C.T., Peden, C.H.F., Oxygen vacancies and catalysis on ceria surfaces (2005) Science, 309 (5735), pp. 713-714. , DOI 10.1126/science.1113955; \nKaspar, J., Fornasiero, P., Graziani, M., Use of CeO 2-based oxides in the three-way catalysis (1999) Catalysis Today, 50 (2), pp. 285-298. , PII S0920586198005100, Recent Progress in Catalysis by Ceria and Related Compounds; \nXia, C., Liu, M., Low-temperature SOFCs based on Gd 0.1Ce 0.9O 1.95 fabricated by dry pressing (2001) Solid State Ionics, 144 (3-4), pp. 249-255. , DOI 10.1016/S0167-2738(01)00980-8, PII S0167273801009808; \nChen, H.T., Chang, J.G., Chen, H.L., Ju, S.P., Identifying the O 2 diffusion and reduction mechanisms on CeO 2 electrolyte in solid oxide fuel cells: A DFT + U study (2009) Journal of Computational Chemistry, 30, pp. 2433-2442; \nFeng, X., Sayle, D.C., Wang, Z.L., Paras, M.S., Santora, B., Sutorik, A.C., Sayle, T.X.T., Her, Y.-S., Converting ceria polyhedral nanoparticles into single-crystal nanospheres (2006) Science, 312 (5779), pp. 1504-1508. , DOI 10.1126/science.1125767; \nZhang, Y.W., Si, R., Liao, C.S., Yan, C.H., Xiao, C.X., Kou, Y., Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals (2003) Journal of Physical Chemistry B, 107, pp. 10159-10167; \nIzu, N., Shin, W., Murayama, N., Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder (2003) Sensors and Actuators, B: Chemical, 93, pp. 449-453; \nFu, X.Q., Wang, C., Yu, H.C., Wang, Y.G., Wang, T.H., Fast humidity sensors based on CeO 2 nanowires (2007) Nanotechnology, 18; \nTrovarelli, A., Catalytic properties of ceria and CeO 2-Containing materials (1996) Catalysis Reviews - Science and Engineering, 38, pp. 439-520; \nFarrauto, R.J., Heck, R.M., Catalytic converters: State of the art and perspectives (1999) Catalysis Today, 51 (3-4), pp. 351-360. , PII S0920586199000243; \nKaspar, J., Fornasiero, P., Hickey, N., Automotive catalytic converters: Current status and some perspectives (2003) Catalysis Today, 77, pp. 419-449; \nKim, C.H., Thompson, L.T., On the importance of nanocrystalline gold for Au/CeO 2 water-gas shift catalysts (2006) Journal of Catalysis, 244 (2), pp. 248-250. , DOI 10.1016/j.jcat.2006.08.018, PII S0021951706003010; \nCarrettin, S., Concepcion, P., Corma, A., Lopez Nieto, J.M., Puntes, V.F., Nanocrystalline CeO 2 increases the activity of Au for CO oxidation by two orders of magnitude (2004) Angewandte Chemie - International Edition, 43 (19), pp. 2538-2540. , DOI 10.1002/anie.200353570; \nFu, Q., Deng, W., Saltsburg, H., Flytzani-Stephanopoulos, M., Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction (2005) Applied Catalysis B: Environmental, 56, pp. 57-68; \nGoi, D., De Leitenburg, C., Trovarelli, A., Dolcetti, G., Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement (2004) Environmental Technology, 25 (12), pp. 1397-1403; \nBlanco, G., Cauqui, M.A., Delgado, J.J., Galtayries, A., Pérez-Omil, J.A., Rodríguez-Izquierdo, J.M., Preparation and characterization of Ce-Mn-O composites with applications in catalytic wet oxidation processes (2004) Surface and Interface Analysis, 36, pp. 752-755; \nMai, H.X., Sun, L.D., Zhang, Y.W., Si, R., Feng, W., Zhang, H.P., Liu, H.C., Yan, C.H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes (2005) Journal of Physical Chemistry B, 109, pp. 24380-2439024385; \nZhou, K., Wang, X., Sun, X., Peng, Q., Li, Y., Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes (2005) Journal of Catalysis, 229, pp. 206-212; \nGonź{a}lez-Rovira, L., Ś{a}nchez-Amaya, J.M., Ĺ{o}pez-Haro, M., Del Rio, E., Hungría, A.B., Midgley, P., Calvino, J.J., Botana, F.J., Single-step process to prepare CeO 2 nanotubes with improved catalytic activity (2009) Nano Letters, 9, pp. 1395-1400; \nXin, Y., Qi, Y., Ma, X., Wang, Z., Zhang, Z., Zhang, S., Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO 2 solid solution nanorods prepared by co-precipitation without surfactants (2010) Materials Letters, 64, pp. 2659-2662; \nChen, Y.C., Chen, K.B., Lee, C.S., Lin, M.C., Direct synthesis of Zr-doped ceria nanotubes (2009) Journal of Physical Chemistry C, 113, pp. 5031-5034; \nYan, L., Xing, X., Yu, R., Qiao, L., Chen, J., Deng, J., Liu, G., Synthesis of Pr-doped ceria nanorods with a high specific surface area (2007) Scripta Materialia, 56 (4), pp. 301-304. , DOI 10.1016/j.scriptamat.2006.09.013, PII S1359646206006841; \nRen, Y., Deng, C., Ai, D., Ma, J., Zan, Q., Kong, J., Xu, J., A facile template-free synthesis of praseodymium-doped ceria nanorods (2010) Key Engineering Materials, pp. 714-716; \nPu, Z.Y., Lu, J.Q., Luo, M.F., Xie, Y.L., Study of oxygen vacancies in Ce 0.9Pr 0.1O 2-$δ$ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy (2007) Journal of Physical Chemistry C, 111, pp. 18695-18702; \nPu, Z.Y., Liu, X.S., Jia, A.P., Xie, Y.L., Lu, J.Q., Luo, M.F., Enhanced activity for CO oxidation over Pr- and Cu-doped CeO 2 catalysts: Effect of oxygen vacancies (2008) Journal of Physical Chemistry C, 112, pp. 15045-15051; \nLuo, M.F., Yan, Z.L., Jin, L.Y., Structure and redox properties of Ce xPr 1-xO 2-$δ$ mixed oxides and their catalytic activities for CO, CH 3OH and CH 4 combustion (2006) Journal of Molecular Catalysis A: Chemical, 260, pp. 157-162; \nGonź{a}lez-Rovira, L., Ś{a}nchez-Amaya, J.M., Ĺ{o}pez-Haro, M., Hungria, A.B., Boukha, Z., Bernal, S., Botana, F.J., Formation and characterization of nanotubes of La(OH) 3 obtained using porous alumina membranes (2008) Nanotechnology, 19; \nBocchetta, P., Santamaria, M., Di Quarto, F., Electrosynthesis of Ce-Co mixed oxide nanotubes with high aspect ratio and tunable composition (2008) Electrochemical and Solid-State Letters, 11, pp. 27-K30; \nBocchetta, P., Santamaria, M., Di Quarto, F., From ceria nanotubes to nanowires through electrogeneration of base (2009) Journal of Applied Electrochemistry, 39, pp. 2073-2081; \nEgerton, R.F., (1986) Electron Energy-Loss Spectroscopy in the Electron Microscope, , Plenum Press New York; \nBernal, S., Blanco, G., Cauqui, M.A., Martín, A., Pintado, J.M., Galtayries, A., Sporken, R., Oxygen buffering capacity (OBC) of praseodymium-modified CeO 2: Influence of the Pr distribution in the ceria host lattice (2000) Surface and Interface Analysis, 30, pp. 85-89; \nManoubi, T., Colliex, C., Rez, P., Quantitative electron energy loss spectroscopy on M 45 edges in rare earth oxides (1990) Journal of Electron Spectroscopy and Related Phenomena, 50 (1-2), pp. 1-18. , DOI 10.1016/0368-2048(90)80001-Q; \nLopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M.A., Blanco, G., Perez-Omil, J.A., Pintado, J.M., Hansen, P.L., In situ transmission electron microscopy investigation of Ce(IV) and Pr(IV) reducibility in a Rh (1%)/Ce 0.8Pr 0.2O 2-x catalyst (2003) Chemical Communications, (5), pp. 644-645; \nRodríguez-Luque, M.P., Herń{a}ndez, J.C., Yeste, M.P., Bernal, S., Cauqui, M.A., Pintado, J.M., Pérez-Omil, J.A., Trasobares, S., Preparation of rhodium/Ce xPr 1-xO 2 catalysts: A nanostructural and nanoanalytical investigation of surface modifications by transmission and scanning-transmission electron microscopy (2008) Journal of Physical Chemistry C, 112, pp. 5900-5910; \nSong, Z., Liu, W., Nishiguchi, H., Takami, A., Nagaoka, K., Takita, Y., The Pr promotion effect on oxygen storage capacity of Ce-Pr oxides studied using a TAP reactor (2007) Applied Catalysis A: General, 329, pp. 86-92. , DOI 10.1016/j.apcata.2007.06.023, PII S0926860X07003924; \nReddy, B.M., Thrimurthulu, G., Katta, L., Yamada, Y., Park, S.E., Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions (2009) Journal of Physical Chemistry C, 113, pp. 15882-15890; \nKang, Z.C., Eyring, L., Lattice oxygen transfer in fluorite-type oxides containing Ce, Pr, and/or Tb (2000) Journal of Solid State Chemistry, 155, pp. 129-137; \nWu, X.N., Zhao, Y.X., Xue, W., Wang, Z.C., He, S.G., Ding, X.L., Active sites of stoichiometric cerium oxide cations (Ce mO 2m +) probed by reactions with carbon monoxide and small hydrocarbon molecules (2010) Physical Chemistry Chemical Physics, 12, pp. 3984-3997; \nPan, C., Zhang, D., Shi, L., CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO 2 nanoplates, nanotubes, and nanorods (2008) Journal of Solid State Chemistry, 181, pp. 1298-1306},\n author = {Rovira, L G and Delgado, J J and Elamrani, K and {Del Rio}, E and Chen, X and Calvino, J J and Botana, F J},\n issn = {09205861 (ISSN)},\n journal = {Catalysis Today},\n keywords = {Anodic aluminum oxide membranes,Anodic oxidation,CO oxidation,Catalyst activity,Catalytic oxidation,Cerium,Cerium compounds,Chemical compositions,Conventional methods,Dark-field,Electrodeposition,Electrodeposition methods,Electron energy loss spectroscopy,Electrons,Energy dispersive spectroscopy,Energy dispersive x-ray spectroscopy,Energy dissipation,FEG-SEM,Field emission guns,High resolution transmission electron microscopy,High-resolution Transmision electron microscopies,Microscopy technique,Mixed oxide,Nano structuration,Nanotube,Nanotubes,Praseodymium,STEM-HAADF,Scanning electron microscopy,Scanning transmission electron microscopy,Synergistic effect,Synthesis (chemical),Template-based,Template-based electrodeposition,Transmission electron microscopy},\n number = {1},\n pages = {167--173},\n title = {{Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation}},\n url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33},\n volume = {180},\n year = {2012}\n}","bibtype":"article","id":"Rovira2012","issn":"09205861 (ISSN)","journal":"Catalysis Today","key":"Rovira2012","keywords":"Anodic aluminum oxide membranes,Anodic oxidation,CO oxidation,Catalyst activity,Catalytic oxidation,Cerium,Cerium compounds,Chemical compositions,Conventional methods,Dark-field,Electrodeposition,Electrodeposition methods,Electron energy loss spectroscopy,Electrons,Energy dispersive spectroscopy,Energy dispersive x-ray spectroscopy,Energy dissipation,FEG-SEM,Field emission guns,High resolution transmission electron microscopy,High-resolution Transmision electron microscopies,Microscopy technique,Mixed oxide,Nano structuration,Nanotube,Nanotubes,Praseodymium,STEM-HAADF,Scanning electron microscopy,Scanning transmission electron microscopy,Synergistic effect,Synthesis (chemical),Template-based,Template-based electrodeposition,Transmission electron microscopy","number":"1","pages":"167--173","title":"Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation","type":"article","url":"https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33","volume":"180","year":"2012","role":"author","urls":{"Paper":"https://www.scopus.com/inward/record.url?eid=2-s2.0-84655161886\\&partnerID=40\\&md5=0041101285fe751bf95e73df18e98f33"},"bibbaseid":"-g--j-elamrani-delrio-chen--j--j-synthesisofceriapraseodimiananotubeswithhighcatalyticactivityforcooxidation-2012"},"bibtype":"article","biburl":"http://www2.uca.es/dept/cmat_qinor/nanomat/People/Delgado.bib","downloads":0,"search_terms":["synthesis","ceria","praseodimia","nanotubes","high","catalytic","activity","oxidation","rovira","g","delgado","j","elamrani","del rio","chen","calvino","j","botana","j"],"title":"Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation","title_words":["synthesis","ceria","praseodimia","nanotubes","high","catalytic","activity","oxidation"],"year":2012,"dataSources":["FMdTKEbMWYtQ7jKBs"]}