Synthesis and characterization of cluster-derived PtRu 5Sn catalysts. Uffalussy, J, K., Captain, K, B., Adams, D, R., Hungria, B, A., Monnier, R, J., Amiridis, & D, M. ACS Catalysis, 1(12):1710--1718, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States, 2011. Paper abstract bibtex Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu 5($μ$-SnPh 2)(C)(CO) 15 cluster used following impregnation onto the MgO support. Under H 2 reduction conditions, partial and full ligand removal are observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDS measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. The formation of smaller metal particles in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity for the hydrogenation of citral. © 2011 American Chemical Society.
@article{ Uffalussy2011,
abstract = {Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu 5($μ$-SnPh 2)(C)(CO) 15 cluster used following impregnation onto the MgO support. Under H 2 reduction conditions, partial and full ligand removal are observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDS measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. The formation of smaller metal particles in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity for the hydrogenation of citral. © 2011 American Chemical Society.},
address = {Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States},
annote = {Export Date: 15 January 2013
Source: Scopus
doi: 10.1021/cs2003559
Language of Original Document: English
Correspondence Address: Amiridis, M.D.; Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; email: amiridis@sc.edu
References: Sinfelt, J.H., (1983) Bimetallic Catalysts. Discoveries, Concepts and Applications, , Wiley: New York;
Adams, R.D., (2000) J. Organomet. Chem., 600, p. 1;
Rodriguez, J.A., (1996) Surf. Sci. Rep., 24, p. 223;
Sinfelt, J.H., (1977) Acc. Chem. Res., 10, p. 15;
Gates, B.C., Lamb, H.H., (1989) J. Mol. Cataly., 52, p. 1;
Siani, A., Alexeev, O.S., Captain, B.K., Lafaye, G., Marecot, P., Adams, R.D., Amiridis, M.D., (2008) J. Catal., 255, p. 162;
Thomas, J.M., Adams, R.D., Boswell, E.M., Captain, B., Gronbeck, H., Raja, R., (2008) Faraday Discuss., 138, p. 301;
Thomas, J.M., Johnson, B.F.G., Raja, R., Sankar, G., Midgley, P., (2003) Acc. Chem. Res., 36, p. 20;
Mihut, C., Descorme, C., Duprez, D., Amiridis, M.D., (2002) J. Catal., 212, p. 125;
Ortiz-Soto, L.B., Alexeev, O.S., Amiridis, M.D., (2006) Langmuir, 22, p. 3112;
Siani, A., Captain, B.K., Alexeev, O.S., Stafyla, E., Hungria, A.B., Midgley, P.A., Thomas, J.M., Amiridis, M.D., (2006) Langmuir, 22, p. 5160;
Siani, A., Captain, B.K., Adams, R.D., Alexeev, O.S., Amiridis, M.D., (2011) Top. Catal., 54, p. 318;
Garcia, B.L., Captain, B.K., Adams, R.D., Hungria, A.B., Midgley, P.A., Thomas, J.M., Weidner, J.W., (2007) J. Cluster Sci., 18, p. 121;
Galvagno, S., Poltarzewski, Z., Donato, A., Neri, G., Pietropaolo, R., (1986) J. Mol. Catal., 35, p. 365;
Muraza, O., Rebrov, E.V., Berenguer-Murcia, A., De Croon, M.H.J.M., Schouten, J.C., (2009) Appl. Catal., A, 368, p. 87;
Hungria, A.B., Raja, R., Adams, R.D., Captain, B., Thomas, J.M., Midgley, P.A., Golovko, V., Johnson, B.F.G., (2006) Angew. Chem., Int. Ed., 45, p. 4782;
Gallezot, P., Richard, D., (1998) Catal. Rev., 40, p. 81;
Adams, R.D., Captain, B., Fu, W., (2003) J. Organomet. Chem., 671, p. 158;
Lafaye, G., Ekou, T., Micheaud-Especel, C., Montassier, C., Marecot, P., (2004) Appl. Catal., A, 257, p. 107;
Silva, A.M., Santos, O.A.A., Mendes, M.J., Jordao, E., Fraga, M.A., (2003) Appl. Catal., A, 241, p. 155;
Giroir-Fendler, A., Richard, D., Gallezot, P., (1991) Faraday Discuss., 92, p. 69;
Coupe, J.N., Jordao, E., Fraga, M.A., Mendes, M.J., (2000) Appl. Catal., A, 45, p. 45;
Lafaye, G., Micheaud-Especel, C., Montassier, C., Marecot, P., (2002) Appl. Catal., A, 230, p. 19;
Chin, S.Y., Williams, C.T., Amiridis, M.D., (2006) J. Phys. Chem. B, 110, p. 871;
Hadjiivanov, K.I., Vayssilov, G.N., (2002) Adv. Catal., 47, p. 307;
Yokomizu, G.H., Louis, C., Bell, A.T., (1989) J. Catal., 120, p. 1;
Zanderighi, G.M., Dossi, C., Ugo, R., Psaro, R., Theolier, A., Choplin, A., D'Ornelas, L., Basset, J.M., (1985) J. Organomet. Chem., 296, p. 127;
Goodwin, J.G., Naccache, C., (1980) J. Catal., 64, p. 482;
Guglielminotti, E., Boccuzzi, F., Manzoli, M., Pinna, F., Scarpa, M., (2000) J. Catal., 192, p. 149;
Hadjiivanov, K., Lavalley, J.-C., Lamotte, J., Mauge, F., Saint-Just, J., Che, M., (1998) J. Catal., 176, p. 415;
Guglielminotti, E., (1986) Langmuir, 2, p. 812;
Alexeev, O., Graham, G.W., Kim, D.-W., Shelef, M., Gates, B.C., (1999) Phys. Chem. Chem. Phys., 1, p. 5725;
Hadjiivanov, K.I., (1998) J. Chem. Soc., Faraday Trans., 94, p. 1901;
Stakheev, A.Y., Shapiro, E.S., Tkachenko, O.P., Jaeger, N.I., Schulz-Ekloff, G., (1997) J. Catal., 169, p. 382;
Holmgren, A., Andersson, B., Duprez, D., (1999) Appl. Catal., B, 22, p. 215;
Hattori, T., Nagata, E., Komai, S., Murakami, Y., (1986) J. Chem. Soc., Chem. Commun., p. 1217;
Anderson, J.A., Rochester, C.H., (1991) Catal. Today, 10, p. 275;
Heyne, H., Tompkin, F.C., (1967) Trans. Faraday Soc., 63, p. 1274;
Boccuzzi, F., Ghiotti, G., Chiorino, A., Marchese, L., (1990) Surf. Sci., 233, p. 141;
Smolikov, M.D., Zaitsev, A.V., Khabibislamova, N.M., Belyi, A.S., Borokov, V.Y., Duplyakin, V.K., Kazanskii, V.B., (1994) React. Kinet. Catal. Lett., 53, p. 169;
Kubelkova, L., Vylita, J., Brabec, L., Drozdova, L., Bolom, T., Novakova, J., Shulz-Ekloff, G., Gaelger, N.I., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2035;
Shen, J.G.-C., (2000) J. Phys. Chem. B, 104, p. 423;
D'Ornelas, L., Theolier, A., Choplin, A., Basset, J.-M., (1988) Inorg. Chem., 27, p. 1261;
Mizushima, T., Tohji, K., Udagawa, Y., Ueno, A., (1990) J. Am. Chem. Soc., 112, p. 7887;
Schwank, J., Parravano, G., Gruber, H.L., (1980) J. Catal., 61, p. 19;
Bassi, I.W., Garbassi, G., Vlaic, G., Marzi, A., Tauszik, G.R., Cocco, G., Galvagno, S., Parravano, G., (1980) J. Catal., 64, p. 405;
Gandao, Z., Coq, B., Charles De Menorval, L., Tichit, D., (1996) Appl. Catal., A, 147, p. 395;
Sokol'skii, D.V., (1979) Kinet. Catal., 20, p. 531},
author = {Uffalussy, K J and Captain, B K and Adams, R D and Hungria, A B and Monnier, J R and Amiridis, M D},
issn = {21555435 (ISSN) },
journal = {ACS Catalysis},
keywords = {Catalyst activity,Catalyst selectivity,Catalyst supports,Citral hydrogenation,Close proximity,EDS measurements,FTIR,Hydrogenation,Ligands,Metal composition,Metal particle,Metals,Monometallic particles,Particle size analysis,Particles (particulate matter),Platinum,Platinum alloys,Platinum compounds,Pt-Ru-Sn,Reduction conditions,Sn-Catalyst,Stabilizing ligands,Synthetic routes,Tin,Trimetallic,Trimetallic catalysts,citral hydrogenation,cluster-derived catalysts,trimetallic catalysts},
number = {12},
pages = {1710--1718},
title = {{Synthesis and characterization of cluster-derived PtRu 5Sn catalysts}},
url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\&partnerID=40\&md5=7de1bbad0a1ee4677395278562841d36},
volume = {1},
year = {2011}
}
Downloads: 0
{"_id":{"_str":"51f639d359ced8df440005af"},"__v":2,"authorIDs":[],"author_short":["Uffalussy","J, K.","Captain","K, B.","Adams","D, R.","Hungria","B, A.","Monnier","R, J.","Amiridis","D, M."],"bibbaseid":"-j--k--d--b--r--d-synthesisandcharacterizationofclusterderivedptru5sncatalysts-2011","bibdata":{"html":"<div class=\"bibbase_paper\"> \n\n\n<span class=\"bibbase_paper_titleauthoryear\">\n\t<span class=\"bibbase_paper_title\"><a name=\"Uffalussy2011\"> </a>Synthesis and characterization of cluster-derived PtRu 5Sn catalysts.</span>\n\t<span class=\"bibbase_paper_author\">\nUffalussy; J, K.; Captain; K, B.; Adams; D, R.; Hungria; B, A.; Monnier; R, J.; Amiridis; and D, M.</span>\n\t<!-- <span class=\"bibbase_paper_year\">2011</span>. -->\n</span>\n\n\n\n<i>ACS Catalysis</i>,\n\n1(12):1710--1718.\n\n 2011.\n\n\n\n\n<br class=\"bibbase_paper_content\"/>\n\n<span class=\"bibbase_paper_content\">\n \n \n <!-- <i -->\n <!-- onclick=\"javascript:log_download('-j--k--d--b--r--d-synthesisandcharacterizationofclusterderivedptru5sncatalysts-2011', 'https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36')\">DEBUG -->\n <!-- </i> -->\n\n <a href=\"https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36\"\n onclick=\"javascript:log_download('-j--k--d--b--r--d-synthesisandcharacterizationofclusterderivedptru5sncatalysts-2011', 'https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36')\">\n <img src=\"http://bibbase.org/img/filetypes/blank.png\"\n\t alt=\"Synthesis and characterization of cluster-derived PtRu 5Sn catalysts [.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36]\" \n\t class=\"bibbase_icon\"\n\t style=\"width: 24px; height: 24px; border: 0px; vertical-align: text-top\" ><span class=\"bibbase_icon_text\">Paper</span></a> \n \n \n \n <a href=\"javascript:showBib('Uffalussy2011')\"\n class=\"bibbase link\">\n <!-- <img src=\"http://bibbase.org/img/filetypes/bib.png\" -->\n\t<!-- alt=\"Synthesis and characterization of cluster-derived PtRu 5Sn catalysts [bib]\" -->\n\t<!-- class=\"bibbase_icon\" -->\n\t<!-- style=\"width: 24px; height: 24px; border: 0px; vertical-align: text-top\"><span class=\"bibbase_icon_text\">Bibtex</span> -->\n BibTeX\n <i class=\"fa fa-caret-down\"></i></a>\n \n \n \n <a class=\"bibbase_abstract_link bibbase link\"\n href=\"javascript:showAbstract('Uffalussy2011')\">\n Abstract\n <i class=\"fa fa-caret-down\"></i></a>\n \n \n \n\n \n \n \n</span>\n\n<div class=\"well well-small bibbase\" id=\"bib_Uffalussy2011\"\n style=\"display:none\">\n <pre>@article{ Uffalussy2011,\n abstract = {Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu 5($μ$-SnPh 2)(C)(CO) 15 cluster used following impregnation onto the MgO support. Under H 2 reduction conditions, partial and full ligand removal are observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDS measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. The formation of smaller metal particles in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity for the hydrogenation of citral. © 2011 American Chemical Society.},\n address = {Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States},\n annote = {Export Date: 15 January 2013\n\nSource: Scopus\n\ndoi: 10.1021/cs2003559\n\nLanguage of Original Document: English\n\nCorrespondence Address: Amiridis, M.D.; Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; email: amiridis@sc.edu\n\nReferences: Sinfelt, J.H., (1983) Bimetallic Catalysts. Discoveries, Concepts and Applications, , Wiley: New York; \nAdams, R.D., (2000) J. Organomet. Chem., 600, p. 1; \nRodriguez, J.A., (1996) Surf. Sci. Rep., 24, p. 223; \nSinfelt, J.H., (1977) Acc. Chem. Res., 10, p. 15; \nGates, B.C., Lamb, H.H., (1989) J. Mol. Cataly., 52, p. 1; \nSiani, A., Alexeev, O.S., Captain, B.K., Lafaye, G., Marecot, P., Adams, R.D., Amiridis, M.D., (2008) J. Catal., 255, p. 162; \nThomas, J.M., Adams, R.D., Boswell, E.M., Captain, B., Gronbeck, H., Raja, R., (2008) Faraday Discuss., 138, p. 301; \nThomas, J.M., Johnson, B.F.G., Raja, R., Sankar, G., Midgley, P., (2003) Acc. Chem. Res., 36, p. 20; \nMihut, C., Descorme, C., Duprez, D., Amiridis, M.D., (2002) J. Catal., 212, p. 125; \nOrtiz-Soto, L.B., Alexeev, O.S., Amiridis, M.D., (2006) Langmuir, 22, p. 3112; \nSiani, A., Captain, B.K., Alexeev, O.S., Stafyla, E., Hungria, A.B., Midgley, P.A., Thomas, J.M., Amiridis, M.D., (2006) Langmuir, 22, p. 5160; \nSiani, A., Captain, B.K., Adams, R.D., Alexeev, O.S., Amiridis, M.D., (2011) Top. Catal., 54, p. 318; \nGarcia, B.L., Captain, B.K., Adams, R.D., Hungria, A.B., Midgley, P.A., Thomas, J.M., Weidner, J.W., (2007) J. Cluster Sci., 18, p. 121; \nGalvagno, S., Poltarzewski, Z., Donato, A., Neri, G., Pietropaolo, R., (1986) J. Mol. Catal., 35, p. 365; \nMuraza, O., Rebrov, E.V., Berenguer-Murcia, A., De Croon, M.H.J.M., Schouten, J.C., (2009) Appl. Catal., A, 368, p. 87; \nHungria, A.B., Raja, R., Adams, R.D., Captain, B., Thomas, J.M., Midgley, P.A., Golovko, V., Johnson, B.F.G., (2006) Angew. Chem., Int. Ed., 45, p. 4782; \nGallezot, P., Richard, D., (1998) Catal. Rev., 40, p. 81; \nAdams, R.D., Captain, B., Fu, W., (2003) J. Organomet. Chem., 671, p. 158; \nLafaye, G., Ekou, T., Micheaud-Especel, C., Montassier, C., Marecot, P., (2004) Appl. Catal., A, 257, p. 107; \nSilva, A.M., Santos, O.A.A., Mendes, M.J., Jordao, E., Fraga, M.A., (2003) Appl. Catal., A, 241, p. 155; \nGiroir-Fendler, A., Richard, D., Gallezot, P., (1991) Faraday Discuss., 92, p. 69; \nCoupe, J.N., Jordao, E., Fraga, M.A., Mendes, M.J., (2000) Appl. Catal., A, 45, p. 45; \nLafaye, G., Micheaud-Especel, C., Montassier, C., Marecot, P., (2002) Appl. Catal., A, 230, p. 19; \nChin, S.Y., Williams, C.T., Amiridis, M.D., (2006) J. Phys. Chem. B, 110, p. 871; \nHadjiivanov, K.I., Vayssilov, G.N., (2002) Adv. Catal., 47, p. 307; \nYokomizu, G.H., Louis, C., Bell, A.T., (1989) J. Catal., 120, p. 1; \nZanderighi, G.M., Dossi, C., Ugo, R., Psaro, R., Theolier, A., Choplin, A., D'Ornelas, L., Basset, J.M., (1985) J. Organomet. Chem., 296, p. 127; \nGoodwin, J.G., Naccache, C., (1980) J. Catal., 64, p. 482; \nGuglielminotti, E., Boccuzzi, F., Manzoli, M., Pinna, F., Scarpa, M., (2000) J. Catal., 192, p. 149; \nHadjiivanov, K., Lavalley, J.-C., Lamotte, J., Mauge, F., Saint-Just, J., Che, M., (1998) J. Catal., 176, p. 415; \nGuglielminotti, E., (1986) Langmuir, 2, p. 812; \nAlexeev, O., Graham, G.W., Kim, D.-W., Shelef, M., Gates, B.C., (1999) Phys. Chem. Chem. Phys., 1, p. 5725; \nHadjiivanov, K.I., (1998) J. Chem. Soc., Faraday Trans., 94, p. 1901; \nStakheev, A.Y., Shapiro, E.S., Tkachenko, O.P., Jaeger, N.I., Schulz-Ekloff, G., (1997) J. Catal., 169, p. 382; \nHolmgren, A., Andersson, B., Duprez, D., (1999) Appl. Catal., B, 22, p. 215; \nHattori, T., Nagata, E., Komai, S., Murakami, Y., (1986) J. Chem. Soc., Chem. Commun., p. 1217; \nAnderson, J.A., Rochester, C.H., (1991) Catal. Today, 10, p. 275; \nHeyne, H., Tompkin, F.C., (1967) Trans. Faraday Soc., 63, p. 1274; \nBoccuzzi, F., Ghiotti, G., Chiorino, A., Marchese, L., (1990) Surf. Sci., 233, p. 141; \nSmolikov, M.D., Zaitsev, A.V., Khabibislamova, N.M., Belyi, A.S., Borokov, V.Y., Duplyakin, V.K., Kazanskii, V.B., (1994) React. Kinet. Catal. Lett., 53, p. 169; \nKubelkova, L., Vylita, J., Brabec, L., Drozdova, L., Bolom, T., Novakova, J., Shulz-Ekloff, G., Gaelger, N.I., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2035; \nShen, J.G.-C., (2000) J. Phys. Chem. B, 104, p. 423; \nD'Ornelas, L., Theolier, A., Choplin, A., Basset, J.-M., (1988) Inorg. Chem., 27, p. 1261; \nMizushima, T., Tohji, K., Udagawa, Y., Ueno, A., (1990) J. Am. Chem. Soc., 112, p. 7887; \nSchwank, J., Parravano, G., Gruber, H.L., (1980) J. Catal., 61, p. 19; \nBassi, I.W., Garbassi, G., Vlaic, G., Marzi, A., Tauszik, G.R., Cocco, G., Galvagno, S., Parravano, G., (1980) J. Catal., 64, p. 405; \nGandao, Z., Coq, B., Charles De Menorval, L., Tichit, D., (1996) Appl. Catal., A, 147, p. 395; \nSokol'skii, D.V., (1979) Kinet. Catal., 20, p. 531},\n author = {Uffalussy, K J and Captain, B K and Adams, R D and Hungria, A B and Monnier, J R and Amiridis, M D},\n issn = {21555435 (ISSN) },\n journal = {ACS Catalysis},\n keywords = {Catalyst activity,Catalyst selectivity,Catalyst supports,Citral hydrogenation,Close proximity,EDS measurements,FTIR,Hydrogenation,Ligands,Metal composition,Metal particle,Metals,Monometallic particles,Particle size analysis,Particles (particulate matter),Platinum,Platinum alloys,Platinum compounds,Pt-Ru-Sn,Reduction conditions,Sn-Catalyst,Stabilizing ligands,Synthetic routes,Tin,Trimetallic,Trimetallic catalysts,citral hydrogenation,cluster-derived catalysts,trimetallic catalysts},\n number = {12},\n pages = {1710--1718},\n title = {{Synthesis and characterization of cluster-derived PtRu 5Sn catalysts}},\n url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36},\n volume = {1},\n year = {2011}\n}</pre>\n</div>\n\n\n<div class=\"well well-small bibbase\" id=\"abstract_Uffalussy2011\"\n style=\"display:none\">\n Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu 5($μ$-SnPh 2)(C)(CO) 15 cluster used following impregnation onto the MgO support. Under H 2 reduction conditions, partial and full ligand removal are observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDS measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. The formation of smaller metal particles in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity for the hydrogenation of citral. © 2011 American Chemical Society.\n</div>\n\n\n</div>\n","downloads":0,"keyword":["Catalyst activity","Catalyst selectivity","Catalyst supports","Citral hydrogenation","Close proximity","EDS measurements","FTIR","Hydrogenation","Ligands","Metal composition","Metal particle","Metals","Monometallic particles","Particle size analysis","Particles (particulate matter)","Platinum","Platinum alloys","Platinum compounds","Pt-Ru-Sn","Reduction conditions","Sn-Catalyst","Stabilizing ligands","Synthetic routes","Tin","Trimetallic","Trimetallic catalysts","citral hydrogenation","cluster-derived catalysts","trimetallic catalysts"],"abstract":"Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu 5($μ$-SnPh 2)(C)(CO) 15 cluster used following impregnation onto the MgO support. Under H 2 reduction conditions, partial and full ligand removal are observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDS measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. The formation of smaller metal particles in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity for the hydrogenation of citral. © 2011 American Chemical Society.","address":"Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States","annote":"Export Date: 15 January 2013 Source: Scopus doi: 10.1021/cs2003559 Language of Original Document: English Correspondence Address: Amiridis, M.D.; Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; email: amiridis@sc.edu References: Sinfelt, J.H., (1983) Bimetallic Catalysts. Discoveries, Concepts and Applications, , Wiley: New York; Adams, R.D., (2000) J. Organomet. Chem., 600, p. 1; Rodriguez, J.A., (1996) Surf. Sci. Rep., 24, p. 223; Sinfelt, J.H., (1977) Acc. Chem. Res., 10, p. 15; Gates, B.C., Lamb, H.H., (1989) J. Mol. Cataly., 52, p. 1; Siani, A., Alexeev, O.S., Captain, B.K., Lafaye, G., Marecot, P., Adams, R.D., Amiridis, M.D., (2008) J. Catal., 255, p. 162; Thomas, J.M., Adams, R.D., Boswell, E.M., Captain, B., Gronbeck, H., Raja, R., (2008) Faraday Discuss., 138, p. 301; Thomas, J.M., Johnson, B.F.G., Raja, R., Sankar, G., Midgley, P., (2003) Acc. Chem. Res., 36, p. 20; Mihut, C., Descorme, C., Duprez, D., Amiridis, M.D., (2002) J. Catal., 212, p. 125; Ortiz-Soto, L.B., Alexeev, O.S., Amiridis, M.D., (2006) Langmuir, 22, p. 3112; Siani, A., Captain, B.K., Alexeev, O.S., Stafyla, E., Hungria, A.B., Midgley, P.A., Thomas, J.M., Amiridis, M.D., (2006) Langmuir, 22, p. 5160; Siani, A., Captain, B.K., Adams, R.D., Alexeev, O.S., Amiridis, M.D., (2011) Top. Catal., 54, p. 318; Garcia, B.L., Captain, B.K., Adams, R.D., Hungria, A.B., Midgley, P.A., Thomas, J.M., Weidner, J.W., (2007) J. Cluster Sci., 18, p. 121; Galvagno, S., Poltarzewski, Z., Donato, A., Neri, G., Pietropaolo, R., (1986) J. Mol. Catal., 35, p. 365; Muraza, O., Rebrov, E.V., Berenguer-Murcia, A., De Croon, M.H.J.M., Schouten, J.C., (2009) Appl. Catal., A, 368, p. 87; Hungria, A.B., Raja, R., Adams, R.D., Captain, B., Thomas, J.M., Midgley, P.A., Golovko, V., Johnson, B.F.G., (2006) Angew. Chem., Int. Ed., 45, p. 4782; Gallezot, P., Richard, D., (1998) Catal. Rev., 40, p. 81; Adams, R.D., Captain, B., Fu, W., (2003) J. Organomet. Chem., 671, p. 158; Lafaye, G., Ekou, T., Micheaud-Especel, C., Montassier, C., Marecot, P., (2004) Appl. Catal., A, 257, p. 107; Silva, A.M., Santos, O.A.A., Mendes, M.J., Jordao, E., Fraga, M.A., (2003) Appl. Catal., A, 241, p. 155; Giroir-Fendler, A., Richard, D., Gallezot, P., (1991) Faraday Discuss., 92, p. 69; Coupe, J.N., Jordao, E., Fraga, M.A., Mendes, M.J., (2000) Appl. Catal., A, 45, p. 45; Lafaye, G., Micheaud-Especel, C., Montassier, C., Marecot, P., (2002) Appl. Catal., A, 230, p. 19; Chin, S.Y., Williams, C.T., Amiridis, M.D., (2006) J. Phys. Chem. B, 110, p. 871; Hadjiivanov, K.I., Vayssilov, G.N., (2002) Adv. Catal., 47, p. 307; Yokomizu, G.H., Louis, C., Bell, A.T., (1989) J. Catal., 120, p. 1; Zanderighi, G.M., Dossi, C., Ugo, R., Psaro, R., Theolier, A., Choplin, A., D'Ornelas, L., Basset, J.M., (1985) J. Organomet. Chem., 296, p. 127; Goodwin, J.G., Naccache, C., (1980) J. Catal., 64, p. 482; Guglielminotti, E., Boccuzzi, F., Manzoli, M., Pinna, F., Scarpa, M., (2000) J. Catal., 192, p. 149; Hadjiivanov, K., Lavalley, J.-C., Lamotte, J., Mauge, F., Saint-Just, J., Che, M., (1998) J. Catal., 176, p. 415; Guglielminotti, E., (1986) Langmuir, 2, p. 812; Alexeev, O., Graham, G.W., Kim, D.-W., Shelef, M., Gates, B.C., (1999) Phys. Chem. Chem. Phys., 1, p. 5725; Hadjiivanov, K.I., (1998) J. Chem. Soc., Faraday Trans., 94, p. 1901; Stakheev, A.Y., Shapiro, E.S., Tkachenko, O.P., Jaeger, N.I., Schulz-Ekloff, G., (1997) J. Catal., 169, p. 382; Holmgren, A., Andersson, B., Duprez, D., (1999) Appl. Catal., B, 22, p. 215; Hattori, T., Nagata, E., Komai, S., Murakami, Y., (1986) J. Chem. Soc., Chem. Commun., p. 1217; Anderson, J.A., Rochester, C.H., (1991) Catal. Today, 10, p. 275; Heyne, H., Tompkin, F.C., (1967) Trans. Faraday Soc., 63, p. 1274; Boccuzzi, F., Ghiotti, G., Chiorino, A., Marchese, L., (1990) Surf. Sci., 233, p. 141; Smolikov, M.D., Zaitsev, A.V., Khabibislamova, N.M., Belyi, A.S., Borokov, V.Y., Duplyakin, V.K., Kazanskii, V.B., (1994) React. Kinet. Catal. Lett., 53, p. 169; Kubelkova, L., Vylita, J., Brabec, L., Drozdova, L., Bolom, T., Novakova, J., Shulz-Ekloff, G., Gaelger, N.I., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2035; Shen, J.G.-C., (2000) J. Phys. Chem. B, 104, p. 423; D'Ornelas, L., Theolier, A., Choplin, A., Basset, J.-M., (1988) Inorg. Chem., 27, p. 1261; Mizushima, T., Tohji, K., Udagawa, Y., Ueno, A., (1990) J. Am. Chem. Soc., 112, p. 7887; Schwank, J., Parravano, G., Gruber, H.L., (1980) J. Catal., 61, p. 19; Bassi, I.W., Garbassi, G., Vlaic, G., Marzi, A., Tauszik, G.R., Cocco, G., Galvagno, S., Parravano, G., (1980) J. Catal., 64, p. 405; Gandao, Z., Coq, B., Charles De Menorval, L., Tichit, D., (1996) Appl. Catal., A, 147, p. 395; Sokol'skii, D.V., (1979) Kinet. Catal., 20, p. 531","author":["Uffalussy","J, K","Captain","K, B","Adams","D, R","Hungria","B, A","Monnier","R, J","Amiridis","D, M"],"author_short":["Uffalussy","J, K.","Captain","K, B.","Adams","D, R.","Hungria","B, A.","Monnier","R, J.","Amiridis","D, M."],"bibtex":"@article{ Uffalussy2011,\n abstract = {Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu 5($μ$-SnPh 2)(C)(CO) 15 cluster used following impregnation onto the MgO support. Under H 2 reduction conditions, partial and full ligand removal are observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDS measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. The formation of smaller metal particles in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity for the hydrogenation of citral. © 2011 American Chemical Society.},\n address = {Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States},\n annote = {Export Date: 15 January 2013\n\nSource: Scopus\n\ndoi: 10.1021/cs2003559\n\nLanguage of Original Document: English\n\nCorrespondence Address: Amiridis, M.D.; Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; email: amiridis@sc.edu\n\nReferences: Sinfelt, J.H., (1983) Bimetallic Catalysts. Discoveries, Concepts and Applications, , Wiley: New York; \nAdams, R.D., (2000) J. Organomet. Chem., 600, p. 1; \nRodriguez, J.A., (1996) Surf. Sci. Rep., 24, p. 223; \nSinfelt, J.H., (1977) Acc. Chem. Res., 10, p. 15; \nGates, B.C., Lamb, H.H., (1989) J. Mol. Cataly., 52, p. 1; \nSiani, A., Alexeev, O.S., Captain, B.K., Lafaye, G., Marecot, P., Adams, R.D., Amiridis, M.D., (2008) J. Catal., 255, p. 162; \nThomas, J.M., Adams, R.D., Boswell, E.M., Captain, B., Gronbeck, H., Raja, R., (2008) Faraday Discuss., 138, p. 301; \nThomas, J.M., Johnson, B.F.G., Raja, R., Sankar, G., Midgley, P., (2003) Acc. Chem. Res., 36, p. 20; \nMihut, C., Descorme, C., Duprez, D., Amiridis, M.D., (2002) J. Catal., 212, p. 125; \nOrtiz-Soto, L.B., Alexeev, O.S., Amiridis, M.D., (2006) Langmuir, 22, p. 3112; \nSiani, A., Captain, B.K., Alexeev, O.S., Stafyla, E., Hungria, A.B., Midgley, P.A., Thomas, J.M., Amiridis, M.D., (2006) Langmuir, 22, p. 5160; \nSiani, A., Captain, B.K., Adams, R.D., Alexeev, O.S., Amiridis, M.D., (2011) Top. Catal., 54, p. 318; \nGarcia, B.L., Captain, B.K., Adams, R.D., Hungria, A.B., Midgley, P.A., Thomas, J.M., Weidner, J.W., (2007) J. Cluster Sci., 18, p. 121; \nGalvagno, S., Poltarzewski, Z., Donato, A., Neri, G., Pietropaolo, R., (1986) J. Mol. Catal., 35, p. 365; \nMuraza, O., Rebrov, E.V., Berenguer-Murcia, A., De Croon, M.H.J.M., Schouten, J.C., (2009) Appl. Catal., A, 368, p. 87; \nHungria, A.B., Raja, R., Adams, R.D., Captain, B., Thomas, J.M., Midgley, P.A., Golovko, V., Johnson, B.F.G., (2006) Angew. Chem., Int. Ed., 45, p. 4782; \nGallezot, P., Richard, D., (1998) Catal. Rev., 40, p. 81; \nAdams, R.D., Captain, B., Fu, W., (2003) J. Organomet. Chem., 671, p. 158; \nLafaye, G., Ekou, T., Micheaud-Especel, C., Montassier, C., Marecot, P., (2004) Appl. Catal., A, 257, p. 107; \nSilva, A.M., Santos, O.A.A., Mendes, M.J., Jordao, E., Fraga, M.A., (2003) Appl. Catal., A, 241, p. 155; \nGiroir-Fendler, A., Richard, D., Gallezot, P., (1991) Faraday Discuss., 92, p. 69; \nCoupe, J.N., Jordao, E., Fraga, M.A., Mendes, M.J., (2000) Appl. Catal., A, 45, p. 45; \nLafaye, G., Micheaud-Especel, C., Montassier, C., Marecot, P., (2002) Appl. Catal., A, 230, p. 19; \nChin, S.Y., Williams, C.T., Amiridis, M.D., (2006) J. Phys. Chem. B, 110, p. 871; \nHadjiivanov, K.I., Vayssilov, G.N., (2002) Adv. Catal., 47, p. 307; \nYokomizu, G.H., Louis, C., Bell, A.T., (1989) J. Catal., 120, p. 1; \nZanderighi, G.M., Dossi, C., Ugo, R., Psaro, R., Theolier, A., Choplin, A., D'Ornelas, L., Basset, J.M., (1985) J. Organomet. Chem., 296, p. 127; \nGoodwin, J.G., Naccache, C., (1980) J. Catal., 64, p. 482; \nGuglielminotti, E., Boccuzzi, F., Manzoli, M., Pinna, F., Scarpa, M., (2000) J. Catal., 192, p. 149; \nHadjiivanov, K., Lavalley, J.-C., Lamotte, J., Mauge, F., Saint-Just, J., Che, M., (1998) J. Catal., 176, p. 415; \nGuglielminotti, E., (1986) Langmuir, 2, p. 812; \nAlexeev, O., Graham, G.W., Kim, D.-W., Shelef, M., Gates, B.C., (1999) Phys. Chem. Chem. Phys., 1, p. 5725; \nHadjiivanov, K.I., (1998) J. Chem. Soc., Faraday Trans., 94, p. 1901; \nStakheev, A.Y., Shapiro, E.S., Tkachenko, O.P., Jaeger, N.I., Schulz-Ekloff, G., (1997) J. Catal., 169, p. 382; \nHolmgren, A., Andersson, B., Duprez, D., (1999) Appl. Catal., B, 22, p. 215; \nHattori, T., Nagata, E., Komai, S., Murakami, Y., (1986) J. Chem. Soc., Chem. Commun., p. 1217; \nAnderson, J.A., Rochester, C.H., (1991) Catal. Today, 10, p. 275; \nHeyne, H., Tompkin, F.C., (1967) Trans. Faraday Soc., 63, p. 1274; \nBoccuzzi, F., Ghiotti, G., Chiorino, A., Marchese, L., (1990) Surf. Sci., 233, p. 141; \nSmolikov, M.D., Zaitsev, A.V., Khabibislamova, N.M., Belyi, A.S., Borokov, V.Y., Duplyakin, V.K., Kazanskii, V.B., (1994) React. Kinet. Catal. Lett., 53, p. 169; \nKubelkova, L., Vylita, J., Brabec, L., Drozdova, L., Bolom, T., Novakova, J., Shulz-Ekloff, G., Gaelger, N.I., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2035; \nShen, J.G.-C., (2000) J. Phys. Chem. B, 104, p. 423; \nD'Ornelas, L., Theolier, A., Choplin, A., Basset, J.-M., (1988) Inorg. Chem., 27, p. 1261; \nMizushima, T., Tohji, K., Udagawa, Y., Ueno, A., (1990) J. Am. Chem. Soc., 112, p. 7887; \nSchwank, J., Parravano, G., Gruber, H.L., (1980) J. Catal., 61, p. 19; \nBassi, I.W., Garbassi, G., Vlaic, G., Marzi, A., Tauszik, G.R., Cocco, G., Galvagno, S., Parravano, G., (1980) J. Catal., 64, p. 405; \nGandao, Z., Coq, B., Charles De Menorval, L., Tichit, D., (1996) Appl. Catal., A, 147, p. 395; \nSokol'skii, D.V., (1979) Kinet. Catal., 20, p. 531},\n author = {Uffalussy, K J and Captain, B K and Adams, R D and Hungria, A B and Monnier, J R and Amiridis, M D},\n issn = {21555435 (ISSN) },\n journal = {ACS Catalysis},\n keywords = {Catalyst activity,Catalyst selectivity,Catalyst supports,Citral hydrogenation,Close proximity,EDS measurements,FTIR,Hydrogenation,Ligands,Metal composition,Metal particle,Metals,Monometallic particles,Particle size analysis,Particles (particulate matter),Platinum,Platinum alloys,Platinum compounds,Pt-Ru-Sn,Reduction conditions,Sn-Catalyst,Stabilizing ligands,Synthetic routes,Tin,Trimetallic,Trimetallic catalysts,citral hydrogenation,cluster-derived catalysts,trimetallic catalysts},\n number = {12},\n pages = {1710--1718},\n title = {{Synthesis and characterization of cluster-derived PtRu 5Sn catalysts}},\n url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36},\n volume = {1},\n year = {2011}\n}","bibtype":"article","id":"Uffalussy2011","issn":"21555435 (ISSN)","journal":"ACS Catalysis","key":"Uffalussy2011","keywords":"Catalyst activity,Catalyst selectivity,Catalyst supports,Citral hydrogenation,Close proximity,EDS measurements,FTIR,Hydrogenation,Ligands,Metal composition,Metal particle,Metals,Monometallic particles,Particle size analysis,Particles (particulate matter),Platinum,Platinum alloys,Platinum compounds,Pt-Ru-Sn,Reduction conditions,Sn-Catalyst,Stabilizing ligands,Synthetic routes,Tin,Trimetallic,Trimetallic catalysts,citral hydrogenation,cluster-derived catalysts,trimetallic catalysts","number":"12","pages":"1710--1718","title":"Synthesis and characterization of cluster-derived PtRu 5Sn catalysts","type":"article","url":"https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36","volume":"1","year":"2011","role":"author","urls":{"Paper":"https://www.scopus.com/inward/record.url?eid=2-s2.0-82955241461\\&partnerID=40\\&md5=7de1bbad0a1ee4677395278562841d36"},"bibbaseid":"-j--k--d--b--r--d-synthesisandcharacterizationofclusterderivedptru5sncatalysts-2011"},"bibtype":"article","biburl":"http://www2.uca.es/dept/cmat_qinor/nanomat/People/Hungria.bib","downloads":0,"search_terms":["synthesis","characterization","cluster","derived","ptru","5sn","catalysts","uffalussy","j","captain","k","adams","d","hungria","b","monnier","r","amiridis","d"],"title":"Synthesis and characterization of cluster-derived PtRu 5Sn catalysts","title_words":["synthesis","characterization","cluster","derived","ptru","5sn","catalysts"],"year":2011,"dataSources":["HXzkPiKpD4u9iJ9ci"]}