Improving exchange-spring nanocomposite permanent magnets. Jiang, S, J., Pearson, E, J., Liu, Y, Z., Kabius, B., Trasobares, S., Miller, J, D., Bader, D, S., Lee, R, D., Haskel, D., Srajer, G., Liu, & P, J. Applied Physics Letters, 85(22):5293--5295, Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States, 2004. Paper abstract bibtex We demonstrate a counterintuitive approach for improving exchange-spring magnets. Contrary to the general belief that the exchange-spring interface must be ideal and atomically coherent, we thermally process, by annealing or high-temperature deposition, epitaxial Sm-Co/Fe thin-film bilayers to induce interfacial mixing. Synchrotron x-ray scattering and electron microscopy elemental mapping confirm the formation of a graded interface. The thermal processing enhances the nucleation field and the energy product. The hysteresis loop becomes more single-phase-like yet the magnetization remains fully reversible. Model simulations produce demagnetization behaviors similar to experimental observations. © 2004 American Institute of Physics.
@article{ Jiang2004,
abstract = {We demonstrate a counterintuitive approach for improving exchange-spring magnets. Contrary to the general belief that the exchange-spring interface must be ideal and atomically coherent, we thermally process, by annealing or high-temperature deposition, epitaxial Sm-Co/Fe thin-film bilayers to induce interfacial mixing. Synchrotron x-ray scattering and electron microscopy elemental mapping confirm the formation of a graded interface. The thermal processing enhances the nucleation field and the energy product. The hysteresis loop becomes more single-phase-like yet the magnetization remains fully reversible. Model simulations produce demagnetization behaviors similar to experimental observations. © 2004 American Institute of Physics.},
address = {Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States},
annote = {Cited By (since 1996): 54
Export Date: 15 January 2013
Source: Scopus
Art. No.: 3
CODEN: APPLA
doi: 10.1063/1.1828225
Language of Original Document: English
Correspondence Address: Jiang, J.S.; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States
References: Kneller, E.F., Hawig, R., (1991) IEEE Trans. Magn., 27, p. 3588;
Skomski, R., Coey, J.M.D., (1993) Phys. Rev. B, 48, p. 15812;
Fischer, R., Kronmüller, H., (1998) J. Appl. Phys., 83, p. 3271;
Hadjipanayis, G.C., (1999) J. Magn. Magn. Mater., 200, p. 373;
Zern, A., Seeger, M., Bauer, J., Kronmüller, H., (1998) J. Magn. Magn. Mater., 184, p. 89;
Nagahama, T., Mibu, K., Shinjo, T., (1998) J. Phys. D, 31, p. 43;
Kim, J., Barmark, K., De Graef, M., Lewis, L.H., Crew, D.C., (2000) J. Appl. Phys., 87, p. 6140;
Goto, E., Hayashi, N., Miyashita, T., Nakagawa, K., (1965) J. Appl. Phys., 36, p. 2951;
Crew, D.C., Kim, J., Lewis, L.H., Barmak, K., (2001) J. Magn. Magn. Mater., 233, p. 257;
Fullerton, E.E., Jiang, J.S., Bader, S.D., (1999) J. Magn. Magn. Mater., 200, p. 392;
Pechan, M.J., Teng, N., Stewart, J.-D., Hilt, J.Z., Fullerton, E.E., Jiang, J.S., Sowers, C.H., Bader, S.D., (2000) J. Appl. Phys., 87, p. 6686;
Lee, D.R., Park, Y.J., Kim, D., Jeong, Y.H., Lee, K.-B., (1998) Phys. Rev. B, 57, p. 8786;
Ray, A.E., Strnat, K.J., (1972) IEEE Trans. Magn., MAG-8, p. 516;
Strnat, K.J., Strnat, R.M.W., (1991) J. Magn. Magn. Mater., 100, p. 38;
Inomata, A., Jiang, J.S., You, C.Y., Pearson, J.E., Bader, S.D., (2000) J. Vac. Sci. Technol. A, 18, p. 1269;
Buschow, K.H.J., (1991) Supermagnets, Hard Magnetic Materials, p. 553. , edited by G. J. Long and F. Grandjean (Kluwer, Dordrecht);
Liu, J.P., Liu, Y., Skomski, R., Sellmyer, D.J., (1999) J. Appl. Phys., 85, p. 4812},
author = {Jiang, J S and Pearson, J E and Liu, Z Y and Kabius, B and Trasobares, S and Miller, D J and Bader, S D and Lee, D R and Haskel, D and Srajer, G and Liu, J P},
issn = {00036951 (ISSN) },
journal = {Applied Physics Letters},
keywords = {Annealing,Demagnetization,Electron microscopy,Exchange-spring magnets,High-temperature deposition,Magnetization,Nanocomposites,Nanostructured materials,Nucleation,Permanent magnets,Synchrotrons,Thermal processing,Thin films,X ray scattering},
number = {22},
pages = {5293--5295},
title = {{Improving exchange-spring nanocomposite permanent magnets}},
url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\&partnerID=40\&md5=450a3480152b03135261a27f4471147e},
volume = {85},
year = {2004}
}
Downloads: 0
{"_id":{"_str":"51f639ce59ced8df44000568"},"__v":2,"authorIDs":[],"author_short":["Jiang","S, J.","Pearson","E, J.","Liu","Y, Z.","Kabius, B.","Trasobares, S.","Miller","J, D.","Bader","D, S.","Lee","R, D.","Haskel, D.","Srajer, G.","Liu","P, J."],"bibbaseid":"-s--e--y-kabius-trasobares--j--d--r-haskel-srajer--p-improvingexchangespringnanocompositepermanentmagnets-2004","bibdata":{"html":"<div class=\"bibbase_paper\"> \n\n\n<span class=\"bibbase_paper_titleauthoryear\">\n\t<span class=\"bibbase_paper_title\"><a name=\"Jiang2004\"> </a>Improving exchange-spring nanocomposite permanent magnets.</span>\n\t<span class=\"bibbase_paper_author\">\nJiang; S, J.; Pearson; E, J.; Liu; Y, Z.; Kabius, B.; Trasobares, S.; Miller; J, D.; Bader; D, S.; Lee; R, D.; Haskel, D.; Srajer, G.; Liu; and P, J.</span>\n\t<!-- <span class=\"bibbase_paper_year\">2004</span>. -->\n</span>\n\n\n\n<i>Applied Physics Letters</i>,\n\n85(22):5293--5295.\n\n 2004.\n\n\n\n\n<br class=\"bibbase_paper_content\"/>\n\n<span class=\"bibbase_paper_content\">\n \n \n <!-- <i -->\n <!-- onclick=\"javascript:log_download('-s--e--y-kabius-trasobares--j--d--r-haskel-srajer--p-improvingexchangespringnanocompositepermanentmagnets-2004', 'https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e')\">DEBUG -->\n <!-- </i> -->\n\n <a href=\"https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e\"\n onclick=\"javascript:log_download('-s--e--y-kabius-trasobares--j--d--r-haskel-srajer--p-improvingexchangespringnanocompositepermanentmagnets-2004', 'https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e')\">\n <img src=\"http://bibbase.org/img/filetypes/blank.png\"\n\t alt=\"Improving exchange-spring nanocomposite permanent magnets [.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e]\" \n\t class=\"bibbase_icon\"\n\t style=\"width: 24px; height: 24px; border: 0px; vertical-align: text-top\" ><span class=\"bibbase_icon_text\">Paper</span></a> \n \n \n \n <a href=\"javascript:showBib('Jiang2004')\"\n class=\"bibbase link\">\n <!-- <img src=\"http://bibbase.org/img/filetypes/bib.png\" -->\n\t<!-- alt=\"Improving exchange-spring nanocomposite permanent magnets [bib]\" -->\n\t<!-- class=\"bibbase_icon\" -->\n\t<!-- style=\"width: 24px; height: 24px; border: 0px; vertical-align: text-top\"><span class=\"bibbase_icon_text\">Bibtex</span> -->\n BibTeX\n <i class=\"fa fa-caret-down\"></i></a>\n \n \n \n <a class=\"bibbase_abstract_link bibbase link\"\n href=\"javascript:showAbstract('Jiang2004')\">\n Abstract\n <i class=\"fa fa-caret-down\"></i></a>\n \n \n \n\n \n \n \n</span>\n\n<div class=\"well well-small bibbase\" id=\"bib_Jiang2004\"\n style=\"display:none\">\n <pre>@article{ Jiang2004,\n abstract = {We demonstrate a counterintuitive approach for improving exchange-spring magnets. Contrary to the general belief that the exchange-spring interface must be ideal and atomically coherent, we thermally process, by annealing or high-temperature deposition, epitaxial Sm-Co/Fe thin-film bilayers to induce interfacial mixing. Synchrotron x-ray scattering and electron microscopy elemental mapping confirm the formation of a graded interface. The thermal processing enhances the nucleation field and the energy product. The hysteresis loop becomes more single-phase-like yet the magnetization remains fully reversible. Model simulations produce demagnetization behaviors similar to experimental observations. © 2004 American Institute of Physics.},\n address = {Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States},\n annote = {Cited By (since 1996): 54\n\nExport Date: 15 January 2013\n\nSource: Scopus\n\nArt. No.: 3\n\nCODEN: APPLA\n\ndoi: 10.1063/1.1828225\n\nLanguage of Original Document: English\n\nCorrespondence Address: Jiang, J.S.; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States\n\nReferences: Kneller, E.F., Hawig, R., (1991) IEEE Trans. Magn., 27, p. 3588; \nSkomski, R., Coey, J.M.D., (1993) Phys. Rev. B, 48, p. 15812; \nFischer, R., Kronmüller, H., (1998) J. Appl. Phys., 83, p. 3271; \nHadjipanayis, G.C., (1999) J. Magn. Magn. Mater., 200, p. 373; \nZern, A., Seeger, M., Bauer, J., Kronmüller, H., (1998) J. Magn. Magn. Mater., 184, p. 89; \nNagahama, T., Mibu, K., Shinjo, T., (1998) J. Phys. D, 31, p. 43; \nKim, J., Barmark, K., De Graef, M., Lewis, L.H., Crew, D.C., (2000) J. Appl. Phys., 87, p. 6140; \nGoto, E., Hayashi, N., Miyashita, T., Nakagawa, K., (1965) J. Appl. Phys., 36, p. 2951; \nCrew, D.C., Kim, J., Lewis, L.H., Barmak, K., (2001) J. Magn. Magn. Mater., 233, p. 257; \nFullerton, E.E., Jiang, J.S., Bader, S.D., (1999) J. Magn. Magn. Mater., 200, p. 392; \nPechan, M.J., Teng, N., Stewart, J.-D., Hilt, J.Z., Fullerton, E.E., Jiang, J.S., Sowers, C.H., Bader, S.D., (2000) J. Appl. Phys., 87, p. 6686; \nLee, D.R., Park, Y.J., Kim, D., Jeong, Y.H., Lee, K.-B., (1998) Phys. Rev. B, 57, p. 8786; \nRay, A.E., Strnat, K.J., (1972) IEEE Trans. Magn., MAG-8, p. 516; \nStrnat, K.J., Strnat, R.M.W., (1991) J. Magn. Magn. Mater., 100, p. 38; \nInomata, A., Jiang, J.S., You, C.Y., Pearson, J.E., Bader, S.D., (2000) J. Vac. Sci. Technol. A, 18, p. 1269; \nBuschow, K.H.J., (1991) Supermagnets, Hard Magnetic Materials, p. 553. , edited by G. J. Long and F. Grandjean (Kluwer, Dordrecht); \nLiu, J.P., Liu, Y., Skomski, R., Sellmyer, D.J., (1999) J. Appl. Phys., 85, p. 4812},\n author = {Jiang, J S and Pearson, J E and Liu, Z Y and Kabius, B and Trasobares, S and Miller, D J and Bader, S D and Lee, D R and Haskel, D and Srajer, G and Liu, J P},\n issn = {00036951 (ISSN) },\n journal = {Applied Physics Letters},\n keywords = {Annealing,Demagnetization,Electron microscopy,Exchange-spring magnets,High-temperature deposition,Magnetization,Nanocomposites,Nanostructured materials,Nucleation,Permanent magnets,Synchrotrons,Thermal processing,Thin films,X ray scattering},\n number = {22},\n pages = {5293--5295},\n title = {{Improving exchange-spring nanocomposite permanent magnets}},\n url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e},\n volume = {85},\n year = {2004}\n}</pre>\n</div>\n\n\n<div class=\"well well-small bibbase\" id=\"abstract_Jiang2004\"\n style=\"display:none\">\n We demonstrate a counterintuitive approach for improving exchange-spring magnets. Contrary to the general belief that the exchange-spring interface must be ideal and atomically coherent, we thermally process, by annealing or high-temperature deposition, epitaxial Sm-Co/Fe thin-film bilayers to induce interfacial mixing. Synchrotron x-ray scattering and electron microscopy elemental mapping confirm the formation of a graded interface. The thermal processing enhances the nucleation field and the energy product. The hysteresis loop becomes more single-phase-like yet the magnetization remains fully reversible. Model simulations produce demagnetization behaviors similar to experimental observations. © 2004 American Institute of Physics.\n</div>\n\n\n</div>\n","downloads":0,"keyword":["Annealing","Demagnetization","Electron microscopy","Exchange-spring magnets","High-temperature deposition","Magnetization","Nanocomposites","Nanostructured materials","Nucleation","Permanent magnets","Synchrotrons","Thermal processing","Thin films","X ray scattering"],"abstract":"We demonstrate a counterintuitive approach for improving exchange-spring magnets. Contrary to the general belief that the exchange-spring interface must be ideal and atomically coherent, we thermally process, by annealing or high-temperature deposition, epitaxial Sm-Co/Fe thin-film bilayers to induce interfacial mixing. Synchrotron x-ray scattering and electron microscopy elemental mapping confirm the formation of a graded interface. The thermal processing enhances the nucleation field and the energy product. The hysteresis loop becomes more single-phase-like yet the magnetization remains fully reversible. Model simulations produce demagnetization behaviors similar to experimental observations. © 2004 American Institute of Physics.","address":"Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States","annote":"Cited By (since 1996): 54 Export Date: 15 January 2013 Source: Scopus Art. No.: 3 CODEN: APPLA doi: 10.1063/1.1828225 Language of Original Document: English Correspondence Address: Jiang, J.S.; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States References: Kneller, E.F., Hawig, R., (1991) IEEE Trans. Magn., 27, p. 3588; Skomski, R., Coey, J.M.D., (1993) Phys. Rev. B, 48, p. 15812; Fischer, R., Kronmüller, H., (1998) J. Appl. Phys., 83, p. 3271; Hadjipanayis, G.C., (1999) J. Magn. Magn. Mater., 200, p. 373; Zern, A., Seeger, M., Bauer, J., Kronmüller, H., (1998) J. Magn. Magn. Mater., 184, p. 89; Nagahama, T., Mibu, K., Shinjo, T., (1998) J. Phys. D, 31, p. 43; Kim, J., Barmark, K., De Graef, M., Lewis, L.H., Crew, D.C., (2000) J. Appl. Phys., 87, p. 6140; Goto, E., Hayashi, N., Miyashita, T., Nakagawa, K., (1965) J. Appl. Phys., 36, p. 2951; Crew, D.C., Kim, J., Lewis, L.H., Barmak, K., (2001) J. Magn. Magn. Mater., 233, p. 257; Fullerton, E.E., Jiang, J.S., Bader, S.D., (1999) J. Magn. Magn. Mater., 200, p. 392; Pechan, M.J., Teng, N., Stewart, J.-D., Hilt, J.Z., Fullerton, E.E., Jiang, J.S., Sowers, C.H., Bader, S.D., (2000) J. Appl. Phys., 87, p. 6686; Lee, D.R., Park, Y.J., Kim, D., Jeong, Y.H., Lee, K.-B., (1998) Phys. Rev. B, 57, p. 8786; Ray, A.E., Strnat, K.J., (1972) IEEE Trans. Magn., MAG-8, p. 516; Strnat, K.J., Strnat, R.M.W., (1991) J. Magn. Magn. Mater., 100, p. 38; Inomata, A., Jiang, J.S., You, C.Y., Pearson, J.E., Bader, S.D., (2000) J. Vac. Sci. Technol. A, 18, p. 1269; Buschow, K.H.J., (1991) Supermagnets, Hard Magnetic Materials, p. 553. , edited by G. J. Long and F. Grandjean (Kluwer, Dordrecht); Liu, J.P., Liu, Y., Skomski, R., Sellmyer, D.J., (1999) J. Appl. Phys., 85, p. 4812","author":["Jiang","S, J","Pearson","E, J","Liu","Y, Z","Kabius, B","Trasobares, S","Miller","J, D","Bader","D, S","Lee","R, D","Haskel, D","Srajer, G","Liu","P, J"],"author_short":["Jiang","S, J.","Pearson","E, J.","Liu","Y, Z.","Kabius, B.","Trasobares, S.","Miller","J, D.","Bader","D, S.","Lee","R, D.","Haskel, D.","Srajer, G.","Liu","P, J."],"bibtex":"@article{ Jiang2004,\n abstract = {We demonstrate a counterintuitive approach for improving exchange-spring magnets. Contrary to the general belief that the exchange-spring interface must be ideal and atomically coherent, we thermally process, by annealing or high-temperature deposition, epitaxial Sm-Co/Fe thin-film bilayers to induce interfacial mixing. Synchrotron x-ray scattering and electron microscopy elemental mapping confirm the formation of a graded interface. The thermal processing enhances the nucleation field and the energy product. The hysteresis loop becomes more single-phase-like yet the magnetization remains fully reversible. Model simulations produce demagnetization behaviors similar to experimental observations. © 2004 American Institute of Physics.},\n address = {Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States},\n annote = {Cited By (since 1996): 54\n\nExport Date: 15 January 2013\n\nSource: Scopus\n\nArt. No.: 3\n\nCODEN: APPLA\n\ndoi: 10.1063/1.1828225\n\nLanguage of Original Document: English\n\nCorrespondence Address: Jiang, J.S.; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States\n\nReferences: Kneller, E.F., Hawig, R., (1991) IEEE Trans. Magn., 27, p. 3588; \nSkomski, R., Coey, J.M.D., (1993) Phys. Rev. B, 48, p. 15812; \nFischer, R., Kronmüller, H., (1998) J. Appl. Phys., 83, p. 3271; \nHadjipanayis, G.C., (1999) J. Magn. Magn. Mater., 200, p. 373; \nZern, A., Seeger, M., Bauer, J., Kronmüller, H., (1998) J. Magn. Magn. Mater., 184, p. 89; \nNagahama, T., Mibu, K., Shinjo, T., (1998) J. Phys. D, 31, p. 43; \nKim, J., Barmark, K., De Graef, M., Lewis, L.H., Crew, D.C., (2000) J. Appl. Phys., 87, p. 6140; \nGoto, E., Hayashi, N., Miyashita, T., Nakagawa, K., (1965) J. Appl. Phys., 36, p. 2951; \nCrew, D.C., Kim, J., Lewis, L.H., Barmak, K., (2001) J. Magn. Magn. Mater., 233, p. 257; \nFullerton, E.E., Jiang, J.S., Bader, S.D., (1999) J. Magn. Magn. Mater., 200, p. 392; \nPechan, M.J., Teng, N., Stewart, J.-D., Hilt, J.Z., Fullerton, E.E., Jiang, J.S., Sowers, C.H., Bader, S.D., (2000) J. Appl. Phys., 87, p. 6686; \nLee, D.R., Park, Y.J., Kim, D., Jeong, Y.H., Lee, K.-B., (1998) Phys. Rev. B, 57, p. 8786; \nRay, A.E., Strnat, K.J., (1972) IEEE Trans. Magn., MAG-8, p. 516; \nStrnat, K.J., Strnat, R.M.W., (1991) J. Magn. Magn. Mater., 100, p. 38; \nInomata, A., Jiang, J.S., You, C.Y., Pearson, J.E., Bader, S.D., (2000) J. Vac. Sci. Technol. A, 18, p. 1269; \nBuschow, K.H.J., (1991) Supermagnets, Hard Magnetic Materials, p. 553. , edited by G. J. Long and F. Grandjean (Kluwer, Dordrecht); \nLiu, J.P., Liu, Y., Skomski, R., Sellmyer, D.J., (1999) J. Appl. Phys., 85, p. 4812},\n author = {Jiang, J S and Pearson, J E and Liu, Z Y and Kabius, B and Trasobares, S and Miller, D J and Bader, S D and Lee, D R and Haskel, D and Srajer, G and Liu, J P},\n issn = {00036951 (ISSN) },\n journal = {Applied Physics Letters},\n keywords = {Annealing,Demagnetization,Electron microscopy,Exchange-spring magnets,High-temperature deposition,Magnetization,Nanocomposites,Nanostructured materials,Nucleation,Permanent magnets,Synchrotrons,Thermal processing,Thin films,X ray scattering},\n number = {22},\n pages = {5293--5295},\n title = {{Improving exchange-spring nanocomposite permanent magnets}},\n url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e},\n volume = {85},\n year = {2004}\n}","bibtype":"article","id":"Jiang2004","issn":"00036951 (ISSN)","journal":"Applied Physics Letters","key":"Jiang2004","keywords":"Annealing,Demagnetization,Electron microscopy,Exchange-spring magnets,High-temperature deposition,Magnetization,Nanocomposites,Nanostructured materials,Nucleation,Permanent magnets,Synchrotrons,Thermal processing,Thin films,X ray scattering","number":"22","pages":"5293--5295","title":"Improving exchange-spring nanocomposite permanent magnets","type":"article","url":"https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e","volume":"85","year":"2004","role":"author","urls":{"Paper":"https://www.scopus.com/inward/record.url?eid=2-s2.0-19944395844\\&partnerID=40\\&md5=450a3480152b03135261a27f4471147e"},"bibbaseid":"-s--e--y-kabius-trasobares--j--d--r-haskel-srajer--p-improvingexchangespringnanocompositepermanentmagnets-2004"},"bibtype":"article","biburl":"http://www2.uca.es/dept/cmat_qinor/nanomat/People/Trasobares.bib","downloads":0,"search_terms":["improving","exchange","spring","nanocomposite","permanent","magnets","jiang","s","pearson","e","liu","y","kabius","trasobares","miller","j","bader","d","lee","r","haskel","srajer","liu","p"],"title":"Improving exchange-spring nanocomposite permanent magnets","title_words":["improving","exchange","spring","nanocomposite","permanent","magnets"],"year":2004,"dataSources":["skdGjmRwC9xSGGdNm"]}