Reliable and simple analytical methods for determination of citrulline and metabolically related amino acids by liquid chromatography after derivatization: Comparison between monolithic and core-shell columns. Acquaviva, A., Romero, L., Castells, C., Ramis-Ramos, G., & Herrero-Martinez, J. Analytical Methods, 6(15):5830-5837, Royal Society of Chemistry, 2014. cited By 12
Reliable and simple analytical methods for determination of citrulline and metabolically related amino acids by liquid chromatography after derivatization: Comparison between monolithic and core-shell columns [link]Paper  doi  abstract   bibtex   
We describe the development of a high-performance liquid chromatography (HPLC) method for the determination of citrulline and other amino acids relevant to intestinal diseases. The amino acids were derivatized with 9-fluorenylmethylchloroformate (FMOC-Cl) and their derivatives were separated on two different columns, a core-shell column (Halo C18) and a silica-based monolith (Chromolith Performance RP-18). The derivatization reaction was optimized with respect to pH, buffer concentration and reproducibility. The optimal derivatization conditions were achieved with 0.4 M borate buffer at pH 9.20, a constant ratio of FMOC-Cl/total amino acids (10 : 1) and 75 mM tyramine after 1 min (quenching reaction). The separation conditions with both chromatographic supports were also optimized. The chromatographic performance (peak capacity and global resolution) of these two columns was compared. This proposed HPLC-UV method was satisfactorily applied to the analysis of a real plasma sample. © 2014 The Royal Society of Chemistry.
@ARTICLE{Acquaviva20145830,
author={Acquaviva, A. and Romero, L. and Castells, C. and Ramis-Ramos, G. and Herrero-Martinez, J.M.},
title={Reliable and simple analytical methods for determination of citrulline and metabolically related amino acids by liquid chromatography after derivatization: Comparison between monolithic and core-shell columns},
journal={Analytical Methods},
year={2014},
volume={6},
number={15},
pages={5830-5837},
doi={10.1039/c4ay00496e},
note={cited By 12},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904313953&doi=10.1039%2fc4ay00496e&partnerID=40&md5=f7d68e12b4c5990dd486c2108673d7a5},
affiliation={Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de la, Plata Calle 47 y 115, 1900 La Plata, Argentina; Departamento de Química Analítica, Universidad de Valencia, Spain},
abstract={We describe the development of a high-performance liquid chromatography (HPLC) method for the determination of citrulline and other amino acids relevant to intestinal diseases. The amino acids were derivatized with 9-fluorenylmethylchloroformate (FMOC-Cl) and their derivatives were separated on two different columns, a core-shell column (Halo C18) and a silica-based monolith (Chromolith Performance RP-18). The derivatization reaction was optimized with respect to pH, buffer concentration and reproducibility. The optimal derivatization conditions were achieved with 0.4 M borate buffer at pH 9.20, a constant ratio of FMOC-Cl/total amino acids (10 : 1) and 75 mM tyramine after 1 min (quenching reaction). The separation conditions with both chromatographic supports were also optimized. The chromatographic performance (peak capacity and global resolution) of these two columns was compared. This proposed HPLC-UV method was satisfactorily applied to the analysis of a real plasma sample. © 2014 The Royal Society of Chemistry.},
keywords={High performance liquid chromatography;  Shells (structures);  Silica, Analytical method;  Buffer concentrations;  Chromatographic performance;  Chromatographic supports;  Chromolith performance;  Core-shell columns;  Derivatization reaction;  Separation condition, Amino acids},
references={Papadia, C., Sherwood, R.A., Kalantzis, C., Wallis, K., Volta, U., Fiorini, E., Forbes, A., (2007) Am. J. Gastroenterol., 102, pp. 1474-1482; Santarpia, L., Catanzano, F., Ruoppolo, M., Alfonsi, L., Vitale, D.F., Pecce, R., Pasanisi, F., Salvatore, F., (2008) Ann. Nutr. Metab., 53, pp. 137-142; Jandera, P., (2011) Anal. Chim. Acta, 692, pp. 1-25; Langrock, T., Czihal, P., Hoffmann, R., (2006) Amino Acids, 30, pp. 291-297; Jámbor, A., Molnár-Perl, I., (2009) J. Chromatogr. A, 1216, pp. 6218-6223; Nouadje, G., Rubie, H., Chatelut, E., Canal, P., Nertz, M., Puig, P., Couderc, F., (1995) J. Chromatogr. A, 717, pp. 293-298; Chen, Z., Wu, J., Baker, G.B., Parent, M., Dovichi, N.J., (2001) J. Chromatogr. A, 914, pp. 293-298; Nouadje, G., Siméon, N., Dedieu, F., Nertz, M., Puig, P., Couderc, F., (1997) J. Chromatogr. A, 765, pp. 337-343; Negro, A., Garbisa, S., Gotte, L., Spina, M., (1987) Anal. Biochem., 160, pp. 39-46; Zhang, L., Li, Y., Zhou, H., Li, L., Wang, Y., Zhang, Y., (2012) J. Pharm. Biomed. Anal., 66, pp. 356-358; Krause, I., Bockhardt, A., Neckermann, H., Henle, T., Klostermeyer, H., (1995) J. Chromatogr. A, 715, pp. 67-79; Pinho, O., Ferreira, I.M.P.L.V.O., Mendes, E., Oliveira, B.M., Ferreira, M., (2001) Food Chem., 75, pp. 287-291; Zhang, W., Kaye, D.M., (2004) Anal. Biochem., 326, pp. 87-92; Miyoshi, Y., Koga, R., Oyama, T., Han, H., Ueno, K., Masuyama, K., Itoh, Y., Hamase, K., (2012) J. Pharm. Biomed. Anal., 69, pp. 42-49; Sultana, H., Onodera, R., Or-Rashid, M.M., Wadud, S., (2001) J. Chromatogr. B: Biomed. Sci. Appl., 755, pp. 321-329; Einarsson, S., Josefsson, B., Lagerkvist, S., (1983) J. Chromatogr. A, 282, pp. 609-618; Malmer, M.F., Schroeder, L.A., (1990) J. Chromatogr. A, 514, pp. 227-239; Mao, H., Wei, W., Xiong, W., Lu, Y., Chen, B., Liu, Z., (2010) Clin. Biochem., 43, pp. 1141-1147; Manica, D.P., Lapos, J.A., Daniel Jones, A., Ewing, A.G., (2003) Anal. Biochem., 322, pp. 68-78; Fiechter, G., Mayer, H.K., (2011) J. Chromatogr. B, 879, pp. 1353-1360; Molnár-Perl, I., (2003) J. Chromatogr. A, 987, pp. 291-309; Molnár-Perl, I., (2011) J. Chromatogr. B, 879, pp. 1241-1269; Jámbor, A., Molnár-Perl, I., (2009) J. Chromatogr. A, 1216, pp. 3064-3077; Leinweber, F.C., Lubda, D., Cabrera, K., Tallarek, U., (2002) Anal. Chem., 74, pp. 2470-2477; Snyder, L., Kirkland, J.J., Dolan, J.W., (2010) Introduction to Modern Liquid Chromatography, , J. Wiley, Hoboken, New Jersey, 3rd edn; Kato, M., Kato, H., Eyama, S., Takatsu, A., (2009) J. Chromatogr. B, 877, pp. 3059-3064; Pumera, M., (2007) Electrophoresis, 28, pp. 2113-2124; Shimbo, K., Yahashi, A., Hirayama, K., Nakazawa, M., Miyano, H., (2009) Anal. Chem., 81, pp. 5172-5179; Song, Y., Funatsu, T., Tsunoda, M., (2011) J. Chromatogr. B, 879, pp. 335-340; Gustavsson, B., Betnãr, I., Betnér, I., (1990) J. Chromatogr. A, 507, pp. 67-77; Lozanov, V., Petrov, S., Mitev, V., (2004) J. Chromatogr. A, 1025, pp. 201-208; Näsholm, T., Sandberg, G., Ericsson, A., (1987) J. Chromatogr. A, 396, pp. 225-236; Bank, R.A., Jansen, E.J., Beekman, B., Te Koppele, J.M., (1996) Anal. Biochem., 240, pp. 167-176; Snyder, L.R., Stadalius, M.A., (1986) High Performance Liquid Chromatography Separations of Large Molecules: A General Model, , Orlando, FL, USA; Fabiani, A., Versari, A., Parpinello, G.P., Castellari, M., Galassi, S., (2002) J. Chromatogr. Sci., 40, pp. 14-18; Restrepo, J., Fajardo, L.F., Angel, L.M., (1993) Salud Uninorte, 8, pp. 3-14; Malaver Ortega, L.F., Alméciga-Díaz, C.J., Morales Monsalve, I.S., Echeverri Peña, O.Y., Guevara Morales, J., Zuluaga Torres, E., Córdoba Ruiz, H.A., Barrera Avellaneda, L.A., (2009) Acta Bioquim. Clin. Latinoam., 43, pp. 647-661},
correspondence_address1={Castells, C.; Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), Plata Calle 47 y 115, 1900 La Plata, Argentina; email: castells@isis.unlp.edu.ar},
publisher={Royal Society of Chemistry},
issn={17599660},
language={English},
abbrev_source_title={Anal. Methods},
document_type={Article},
source={Scopus},
}

Downloads: 0