Forecasting global atmospheric CO<sub>2</sub>. Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P., Deutscher, N., M., Engelen, R., Jones, L., Kivi, R., Paris, J., Peuch, V., Sherlock, V., Vermeulen, A., T., Wennberg, P., O., & Wunch, D. Atmospheric Chemistry and Physics, 14(21):11959-11983, 11, 2014. Paper Website abstract bibtex A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and CO2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.
@article{
title = {Forecasting global atmospheric CO<sub>2</sub>},
type = {article},
year = {2014},
identifiers = {[object Object]},
pages = {11959-11983},
volume = {14},
websites = {http://www.atmos-chem-phys.net/14/11959/2014/},
month = {11},
day = {14},
id = {9ba2ef8c-7eb0-3395-8215-018f0fb19a4e},
created = {2014-11-18T22:27:16.000Z},
accessed = {2014-11-18},
file_attached = {true},
profile_id = {cafdd554-a281-3e7c-b40b-73110026f0ba},
last_modified = {2017-03-15T07:21:06.366Z},
read = {false},
starred = {false},
authored = {true},
confirmed = {true},
hidden = {false},
private_publication = {false},
abstract = {A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and CO2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.},
bibtype = {article},
author = {Agustí-Panareda, A. and Massart, S. and Chevallier, F. and Boussetta, S. and Balsamo, G. and Beljaars, A. and Ciais, P. and Deutscher, N. M. and Engelen, R. and Jones, L. and Kivi, R. and Paris, J.-D. and Peuch, V.-H. and Sherlock, V. and Vermeulen, A. T. and Wennberg, P. O. and Wunch, D.},
journal = {Atmospheric Chemistry and Physics},
number = {21}
}
Downloads: 0
{"_id":"3EK5nXLhkgFjXYFrX","bibbaseid":"agustpanareda-massart-chevallier-boussetta-balsamo-beljaars-ciais-deutscher-etal-forecastingglobalatmosphericcosub2sub-2014","downloads":0,"creationDate":"2018-03-26T13:57:38.447Z","title":"Forecasting global atmospheric CO<sub>2</sub>","author_short":["Agustí-Panareda, A.","Massart, S.","Chevallier, F.","Boussetta, S.","Balsamo, G.","Beljaars, A.","Ciais, P.","Deutscher, N., M.","Engelen, R.","Jones, L.","Kivi, R.","Paris, J.","Peuch, V.","Sherlock, V.","Vermeulen, A., T.","Wennberg, P., O.","Wunch, D."],"year":2014,"bibtype":"article","biburl":null,"bibdata":{"title":"Forecasting global atmospheric CO<sub>2</sub>","type":"article","year":"2014","identifiers":"[object Object]","pages":"11959-11983","volume":"14","websites":"http://www.atmos-chem-phys.net/14/11959/2014/","month":"11","day":"14","id":"9ba2ef8c-7eb0-3395-8215-018f0fb19a4e","created":"2014-11-18T22:27:16.000Z","accessed":"2014-11-18","file_attached":"true","profile_id":"cafdd554-a281-3e7c-b40b-73110026f0ba","last_modified":"2017-03-15T07:21:06.366Z","read":false,"starred":false,"authored":"true","confirmed":"true","hidden":false,"private_publication":false,"abstract":"A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and CO2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.","bibtype":"article","author":"Agustí-Panareda, A. and Massart, S. and Chevallier, F. and Boussetta, S. and Balsamo, G. and Beljaars, A. and Ciais, P. and Deutscher, N. M. and Engelen, R. and Jones, L. and Kivi, R. and Paris, J.-D. and Peuch, V.-H. and Sherlock, V. and Vermeulen, A. T. and Wennberg, P. O. and Wunch, D.","journal":"Atmospheric Chemistry and Physics","number":"21","bibtex":"@article{\n title = {Forecasting global atmospheric CO<sub>2</sub>},\n type = {article},\n year = {2014},\n identifiers = {[object Object]},\n pages = {11959-11983},\n volume = {14},\n websites = {http://www.atmos-chem-phys.net/14/11959/2014/},\n month = {11},\n day = {14},\n id = {9ba2ef8c-7eb0-3395-8215-018f0fb19a4e},\n created = {2014-11-18T22:27:16.000Z},\n accessed = {2014-11-18},\n file_attached = {true},\n profile_id = {cafdd554-a281-3e7c-b40b-73110026f0ba},\n last_modified = {2017-03-15T07:21:06.366Z},\n read = {false},\n starred = {false},\n authored = {true},\n confirmed = {true},\n hidden = {false},\n private_publication = {false},\n abstract = {A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and CO2 in situ observations, as they become available in near-real time. In this way, the accumulation of errors in the atmospheric CO2 forecast will be reduced. Improvements in the CO2 forecast are also expected with the continuous developments in the operational IFS.},\n bibtype = {article},\n author = {Agustí-Panareda, A. and Massart, S. and Chevallier, F. and Boussetta, S. and Balsamo, G. and Beljaars, A. and Ciais, P. and Deutscher, N. M. and Engelen, R. and Jones, L. and Kivi, R. and Paris, J.-D. and Peuch, V.-H. and Sherlock, V. and Vermeulen, A. T. and Wennberg, P. O. and Wunch, D.},\n journal = {Atmospheric Chemistry and Physics},\n number = {21}\n}","author_short":["Agustí-Panareda, A.","Massart, S.","Chevallier, F.","Boussetta, S.","Balsamo, G.","Beljaars, A.","Ciais, P.","Deutscher, N., M.","Engelen, R.","Jones, L.","Kivi, R.","Paris, J.","Peuch, V.","Sherlock, V.","Vermeulen, A., T.","Wennberg, P., O.","Wunch, D."],"urls":{"Paper":"https://bibbase.org/service/mendeley/cafdd554-a281-3e7c-b40b-73110026f0ba/file/55a790f3-594d-fae7-5fe9-9c845d9f1fda/2014-Forecasting_global_atmospheric_COsub2sub.pdf.pdf","Website":"http://www.atmos-chem-phys.net/14/11959/2014/"},"bibbaseid":"agustpanareda-massart-chevallier-boussetta-balsamo-beljaars-ciais-deutscher-etal-forecastingglobalatmosphericcosub2sub-2014","role":"author","downloads":0},"search_terms":["forecasting","global","atmospheric","sub","sub","agustí-panareda","massart","chevallier","boussetta","balsamo","beljaars","ciais","deutscher","engelen","jones","kivi","paris","peuch","sherlock","vermeulen","wennberg","wunch"],"keywords":[],"authorIDs":[]}