Astrophysics with the Laser Interferometer Space Antenna. Amaro-Seoane, P., Andrews, J., Arca Sedda, M., Askar, A., Balasov, R., Bartos, I., Bavera, S., Bellovary, J., Berry, C., Berti, E., Bianchi, S., Blecha, L., Blondin, S., Bogdanović, T., Boissier, S., Bonetti, M., Bonoli, S., Bortolas, E., Breivik, K., Capelo, P., Caramete, L., Catorini, F., Charisi, M., Chaty, S., Chen, X., Chruślińska, M., Chua, A., Church, R., Colpi, M., D’Orazio, D., Danielski, C., Davies, M., Dayal, P., De Rosa, A., Derdzinski, A., Destounis, K., Dotti, M., Duţan, I., Dvorkin, I., Fabj, G., Foglizzo, T., Ford, S., Fouvry, J., Fragkos, T., Fryer, C., Gaspari, M., Gerosa, D., Graziani, L., Groot, P., Habouzit, M., Haggard, D., Haiman, Z., Han, W., Istrate, A., Johansson, P., Khan, F., Kimpson, T., Kokkotas, K., Kong, A., Korol, V., Kremer, K., Kupfer, T., Lamberts, A., Larson, S., Lau, M., Liu, D., Lloyd-Ronning, N., Lodato, G., Lupi, A., Ma, C., Maccarone, T., Mandel, I., Mangiagli, A., Mapelli, M., Mathis, S., Mayer, L., McGee, S., McKernan, B., Miller, M., Mota, D., Mumpower, M., Nasim, S., Nelemans, G., Noble, S., Pacucci, F., Panessa, F., Paschalidis, V., Pfister, H., Porquet, D., Quenby, J., Röpke, F., Regan, J., Rosswog, S., Ruiter, A., Ruiz, M., Runnoe, J., Schneider, R., Schnittman, J., Secunda, A., Sesana, A., Seto, N., Shao, L., Shapiro, S., Sopuerta, C., Stone, N., Suvorov, A., Tamanini, N., Tamfal, T., Tauris, T., Temmink, K., Tomsick, J., Toonen, S., Torres-Orjuela, A., Toscani, M., Tsokaros, A., Unal, C., Vázquez-Aceves, V., Valiante, R., van Putten, M., van Roestel, J., Vignali, C., Volonteri, M., Wu, K., Younsi, Z., Yu, S., Zane, S., Zwick, L., Antonini, F., Baibhav, V., Barausse, E., Bonilla Rivera, A., Branchesi, M., Branduardi-Raymont, G., Burdge, K., Chakraborty, S., Cuadra, J., Dage, K., Davis, B., de Mink, S., Decarli, R., Doneva, D., Escoffier, S., Gandhi, P., Haardt, F., Lousto, C., Nissanke, S., Nordhaus, J., O’Shaughnessy, R., Portegies Zwart, S., Pound, A., Schussler, F., Sergijenko, O., Spallicci, A., Vernieri, D., & Vigna-Gómez, A. 2022.
abstract   bibtex   
The decade prior to LISA’s launch will be an exciting one for the astrophysics community, presenting unique challenges and opportunities in preparing for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and current astronomical observations that will influence preparations for the pipelines that will deliver LISA data, and guide our interpretations of the first LISA observations and catalogues. This review describes the current state of knowledge regarding three main source classes for LISA: ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. For each of these three source classes, our current understanding of the astrophysical processes that create them and guide their ongoing evolution is a rich tapestry formed from extant observations (usually electromagnetic), numerical simulations and modelling, and theoretical considerations. LISA data will be added to this, providing new independent information that will help constrain the physics governing these systems, and opening up new avenues of investigation for future observations, theory, and simulations. Astronomy observations will continue to evolve and alter the scientific landscape prior to LISA’s launch, and theory and modelling will become more refined. Such advances will inform our understanding of the ways in which LISA data can be used, and they can also sharpen the focus on the important ways in which gravitational wave data will expand and enhance our ability to understand astrophysical phenomena in many different environments and scales. This review endeavours to provide a framework within which to consider these possibilities, and should be a good starting point for those interested in using LISA as a new observational tool for understanding the Universe.
@misc{
 title = {Astrophysics with the Laser Interferometer Space Antenna},
 type = {misc},
 year = {2022},
 source = {arXiv},
 id = {965e1c6b-986c-3835-97cb-ad6140883cd8},
 created = {2023-02-13T08:13:51.539Z},
 file_attached = {false},
 profile_id = {e942ccc1-42d0-35f9-8d4a-089f3df6b085},
 last_modified = {2023-02-13T08:13:51.539Z},
 read = {false},
 starred = {false},
 authored = {true},
 confirmed = {false},
 hidden = {false},
 private_publication = {true},
 abstract = {The decade prior to LISA’s launch will be an exciting one for the astrophysics community, presenting unique challenges and opportunities in preparing for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and current astronomical observations that will influence preparations for the pipelines that will deliver LISA data, and guide our interpretations of the first LISA observations and catalogues. This review describes the current state of knowledge regarding three main source classes for LISA: ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. For each of these three source classes, our current understanding of the astrophysical processes that create them and guide their ongoing evolution is a rich tapestry formed from extant observations (usually electromagnetic), numerical simulations and modelling, and theoretical considerations. LISA data will be added to this, providing new independent information that will help constrain the physics governing these systems, and opening up new avenues of investigation for future observations, theory, and simulations. Astronomy observations will continue to evolve and alter the scientific landscape prior to LISA’s launch, and theory and modelling will become more refined. Such advances will inform our understanding of the ways in which LISA data can be used, and they can also sharpen the focus on the important ways in which gravitational wave data will expand and enhance our ability to understand astrophysical phenomena in many different environments and scales. This review endeavours to provide a framework within which to consider these possibilities, and should be a good starting point for those interested in using LISA as a new observational tool for understanding the Universe.},
 bibtype = {misc},
 author = {Amaro-Seoane, P. and Andrews, J. and Arca Sedda, M. and Askar, A. and Balasov, R. and Bartos, I. and Bavera, S.S. and Bellovary, J. and Berry, C.P.L. and Berti, E. and Bianchi, S. and Blecha, L. and Blondin, S. and Bogdanović, T. and Boissier, S. and Bonetti, M. and Bonoli, S. and Bortolas, E. and Breivik, K. and Capelo, P.R. and Caramete, L. and Catorini, F. and Charisi, M. and Chaty, S. and Chen, X. and Chruślińska, M. and Chua, A.J.K. and Church, R. and Colpi, M. and D’Orazio, D. and Danielski, C. and Davies, M.B. and Dayal, P. and De Rosa, A. and Derdzinski, A. and Destounis, K. and Dotti, M. and Duţan, I. and Dvorkin, I. and Fabj, G. and Foglizzo, T. and Ford, S. and Fouvry, J.-B. and Fragkos, T. and Fryer, C. and Gaspari, M. and Gerosa, D. and Graziani, L. and Groot, P. and Habouzit, M. and Haggard, D. and Haiman, Z. and Han, W.-B. and Istrate, A. and Johansson, P.H. and Khan, F.M. and Kimpson, T. and Kokkotas, K. and Kong, A. and Korol, V. and Kremer, K. and Kupfer, T. and Lamberts, A. and Larson, S. and Lau, M. and Liu, D. and Lloyd-Ronning, N. and Lodato, G. and Lupi, A. and Ma, C.-P. and Maccarone, T. and Mandel, I. and Mangiagli, A. and Mapelli, M. and Mathis, S. and Mayer, L. and McGee, S. and McKernan, B. and Miller, M.C. and Mota, D.F. and Mumpower, M. and Nasim, S.S. and Nelemans, G. and Noble, S. and Pacucci, F. and Panessa, F. and Paschalidis, V. and Pfister, H. and Porquet, D. and Quenby, J. and Röpke, F. and Regan, J. and Rosswog, S. and Ruiter, A. and Ruiz, M. and Runnoe, J. and Schneider, R. and Schnittman, J. and Secunda, A. and Sesana, A. and Seto, N. and Shao, L. and Shapiro, S. and Sopuerta, C. and Stone, N. and Suvorov, A. and Tamanini, N. and Tamfal, T. and Tauris, T. and Temmink, K. and Tomsick, J. and Toonen, S. and Torres-Orjuela, A. and Toscani, M. and Tsokaros, A. and Unal, C. and Vázquez-Aceves, V. and Valiante, R. and van Putten, M. and van Roestel, J. and Vignali, C. and Volonteri, M. and Wu, K. and Younsi, Z. and Yu, S. and Zane, S. and Zwick, L. and Antonini, F. and Baibhav, V. and Barausse, E. and Bonilla Rivera, A. and Branchesi, M. and Branduardi-Raymont, G. and Burdge, K. and Chakraborty, S. and Cuadra, J. and Dage, K. and Davis, B. and de Mink, S.E. and Decarli, R. and Doneva, D. and Escoffier, S. and Gandhi, P. and Haardt, F. and Lousto, C.O. and Nissanke, S. and Nordhaus, J. and O’Shaughnessy, R. and Portegies Zwart, S. and Pound, A. and Schussler, F. and Sergijenko, O. and Spallicci, A. and Vernieri, D. and Vigna-Gómez, A.}
}

Downloads: 0