Chemistry and properties of nanocrystals of different shapes. and Chen Xiaobo and Narayanan Radha&nbsp;and El-Sayed Mostafa A.<nbsp>Burda, C. 105:1025--1102, April, 0.
abstract   bibtex   
Content 1. General Introduction and Comments 1025 2. Preparation of Nanostructures of Different Shapes 1027 2.1. Introduction: Nucleation and Particle Growth 1027 2.2. Preparation Methods 1028 2.2.1. Sol Process 1028 2.2.2. Micelles 1031 2.2.3. Sol-Gel Process 1034 2.2.4. Chemical Precipitation 1034 2.2.5. Hydrothermal Synthesis 1036 2.2.6. Pyrolysis 1036 2.2.7. Vapor Deposition 1038 2.3. Growth Mechanism of Nanostructures of Different Shapes 1040 2.3.1. Effect of Monomer Concentration on the Shape of the Semiconductor QDs 1040 2.3.2. Vapor-Liquid-Solid Growth for Nanowire by CVD and PVD Methods 1041 2.3.3. Light-Induced Shape Change Mechanism of Metal Nanorods 1042 3. Surface Chemical Modification of Nanoparticles 1042 4. Assembly of Nanoparticles 1042 5. Optical, Thermal, and Electrical Properties of Particles of Different Sizes and Shapes 1047 5.1. Semiconductor Nanoparticles 1047 5.1.1. Discrete Electronic Structure 1047 5.1.2. Optical Transitions in Nanostructures of Different Shapes 1048 5.2. Metallic Nanoparticles 1057 5.3. High Surface-to-Volume Ratio 1059 5.4. Melting Point 1060 5.5. Conductivity and Coulomb Blockade 1061 6. Nonradiative Relaxation of Nanoparticles of Different Shapes 1063 6.1. Nonradiative Relaxation in Metal Nanostructured Systems 1063 6.1.1. Background 1063 6.1.2. Theoretical Modeling of the Transient Optical Response 1063 6.1.3. Electron-Electron Thermalization in Gold Nanoparticles 1063 6.1.4. Electron-Phonon Relaxation in Gold Nanoparticles 1064 6.1.5. Shape and Size Dependence on the Electron-Phonon Relaxation Rate 1065 6.1.6. Pump Power Dependence of the Electron-Phonon Relaxation Rate 1066 6.2. Nonradiative Relaxation in Semiconductor Nanostructured Systems 1066 6.2.1. II-VI Semiconductor Systems 1067 6.2.2. I-VII Semiconductor Systems 1074 6.2.3. III-V Semiconductor Systems 1074 6.2.4. Group IV Semiconductor Systems 1074 6.2.5. Metal Oxides Systems 1075 6.2.6. Other Systems 1075 6.3. Hot Electrons and Lattice Temperatures in Nanoparticles 1076 6.4. Phonon Bottleneck 1078 6.5. Quantized Auger Rates 1079 6.6. Trapping Dynamics 1079 7. Nanocatalysis 1081 7.1. Introduction 1081 7.2. Homogeneous Catalysis 1081 7.2.1. Chemical Reactions Catalyzed Using Colloidal Transition Metal Nanocatalysts 1083 7.3. Heterogeneous Catalysis on Support 1086 7.3.1. Lithographically Fabricated Supported Transition Metal Nanocatalysts 1087 7.3.2. Chemical Reactions Catalyzed Using Supported Transition Metal Nanocatalysts 1087 8. Summary 1090 8.1. Reviews 1090 8.1.1. Synthesis 1090 8.1.2. Properties 1090 8.1.3. General 1091 8.2. Books 1091 8.2.1. Metal Nanoparticles 1091 8.2.2. Semiconductor Nanoparticles 1091 8.2.3. Carbon Nanotubes and Nanoparticles 1091 8.2.4. Nanoparticles in General 1092 9. Acknowledgment 1092 10. References 1092
@article{ burda_chemistry_0,
  title = {Chemistry and properties of nanocrystals of different shapes},
  volume = {105},
  shorttitle = {Chemistry and properties of nanocrystals of different shapes},
  abstract = {Content 1. General Introduction and Comments 1025 2. Preparation of Nanostructures of Different Shapes 1027 2.1. Introduction: Nucleation and Particle Growth 1027 2.2. Preparation Methods 1028 2.2.1. Sol Process 1028 2.2.2. Micelles 1031 2.2.3. Sol-Gel Process 1034 2.2.4. Chemical Precipitation 1034 2.2.5. Hydrothermal Synthesis 1036 2.2.6. Pyrolysis 1036 2.2.7. Vapor Deposition 1038 2.3. Growth Mechanism of Nanostructures of Different Shapes 1040 2.3.1. Effect of Monomer Concentration on the Shape of the Semiconductor {QDs} 1040 2.3.2. Vapor-Liquid-Solid Growth for Nanowire by {CVD} and {PVD} Methods 1041 2.3.3. Light-Induced Shape Change Mechanism of Metal Nanorods 1042 3. Surface Chemical Modification of Nanoparticles 1042 4. Assembly of Nanoparticles 1042 5. Optical, Thermal, and Electrical Properties of Particles of Different Sizes and Shapes 1047 5.1. Semiconductor Nanoparticles 1047 5.1.1. Discrete Electronic Structure 1047 5.1.2. Optical Transitions in Nanostructures of Different Shapes 1048 5.2. Metallic Nanoparticles 1057 5.3. High Surface-to-Volume Ratio 1059 5.4. Melting Point 1060 5.5. Conductivity and Coulomb Blockade 1061 6. Nonradiative Relaxation of Nanoparticles of Different Shapes 1063 6.1. Nonradiative Relaxation in Metal Nanostructured Systems 1063 6.1.1. Background 1063 6.1.2. Theoretical Modeling of the Transient Optical Response 1063 6.1.3. Electron-Electron Thermalization in Gold Nanoparticles 1063 6.1.4. Electron-Phonon Relaxation in Gold Nanoparticles 1064 6.1.5. Shape and Size Dependence on the Electron-Phonon Relaxation Rate 1065 6.1.6. Pump Power Dependence of the Electron-Phonon Relaxation Rate 1066 6.2. Nonradiative Relaxation in Semiconductor Nanostructured Systems 1066 6.2.1. {II}-{VI} Semiconductor Systems 1067 6.2.2. I-{VII} Semiconductor Systems 1074 6.2.3. {III}-V Semiconductor Systems 1074 6.2.4. Group {IV} Semiconductor Systems 1074 6.2.5. Metal Oxides Systems 1075 6.2.6. Other Systems 1075 6.3. Hot Electrons and Lattice Temperatures in Nanoparticles 1076 6.4. Phonon Bottleneck 1078 6.5. Quantized Auger Rates 1079 6.6. Trapping Dynamics 1079 7. Nanocatalysis 1081 7.1. Introduction 1081 7.2. Homogeneous Catalysis 1081 7.2.1. Chemical Reactions Catalyzed Using Colloidal Transition Metal Nanocatalysts 1083 7.3. Heterogeneous Catalysis on Support 1086 7.3.1. Lithographically Fabricated Supported Transition Metal Nanocatalysts 1087 7.3.2. Chemical Reactions Catalyzed Using Supported Transition Metal Nanocatalysts 1087 8. Summary 1090 8.1. Reviews 1090 8.1.1. Synthesis 1090 8.1.2. Properties 1090 8.1.3. General 1091 8.2. Books 1091 8.2.1. Metal Nanoparticles 1091 8.2.2. Semiconductor Nanoparticles 1091 8.2.3. Carbon Nanotubes and Nanoparticles 1091 8.2.4. Nanoparticles in General 1092 9. Acknowledgment 1092 10. References 1092},
  author = {Burda, Clemens {and} Chen Xiaobo {and} Narayanan Radha {and} El-Sayed Mostafa A.},
  month = {April},
  year = {0},
  pages = {1025--1102}
}

Downloads: 0