. Data Blocks: Hybrid OLTP and OLAP on compressed storage using both vectorization and compilation.
abstract   bibtex   
This work aims at reducing the main-memory footprint in high performance hybrid OLTP&OLAP databases, while retaining high query performance and transactional throughput. For this purpose, an innovative compressed columnar storage format for cold data, called Data Blocks is introduced. Data Blocks further incorporate a new light-weight index structure called Positional SMA that narrows scan ranges within Data Blocks even if the entire block cannot be ruled out. To achieve highest OLTP performance, the compression schemes of Data Blocks are very light-weight, such that OLTP transactions can still quickly access individual tuples. This sets our storage scheme apart from those used in specialized analytical databases where data must usually be bit-unpacked. Up to now, high-performance analytical systems use either vectorized query execution or
@inbook{820af4d900b54d74bd8f9f6287d4cd14,
  title     = "Data Blocks: Hybrid OLTP and OLAP on compressed storage using both vectorization and compilation",
  abstract  = "This work aims at reducing the main-memory footprint in high performance hybrid OLTP&OLAP databases, while retaining high query performance and transactional throughput. For this purpose, an innovative compressed columnar storage format for cold data, called Data Blocks is introduced. Data Blocks further incorporate a new light-weight index structure called Positional SMA that narrows scan ranges within Data Blocks even if the entire block cannot be ruled out. To achieve highest OLTP performance, the compression schemes of Data Blocks are very light-weight, such that OLTP transactions can still quickly access individual tuples. This sets our storage scheme apart from those used in specialized analytical databases where data must usually be bit-unpacked. Up to now, high-performance analytical systems use either vectorized query execution or {"}

Downloads: 0