Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues. Archives of Biochemistry and Biophysics, 376(1):124-140, 2000. cited By 10
Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues [link]Paper  doi  abstract   bibtex   
The method for separation of emission (EM) and excitation (EX) spectra of a protein into EM and EX spectra of its tyrosine (Tyr) and tryptophan (Trp) residues was described. The method was applied to analysis of Escherichia coli RecA protein and its complexes with Mg2+, ATPγS or ADP, and single-stranded DNA (ssDNA). RecA consists of a C-terminal domain containing two Trp and two Tyr residues, a major domain with five Tyr residues, and an N-terminal domain without these residues (R. M. Story, I. T. Weber, and T. A. Steitz (1992) Nature (London) 355, 374-376). Because the fluorescence of Tyr residues in the C-terminal domain was shown to be quenched by energy transfer to Trp residues, Trp and Tyr fluorescence of RecA was provided by the C-terminal and the major domains, respectively. Spectral analysis of Trp and Tyr constituents revealed that a relative spatial location of the C-terminal and the major domains in RecA monomers was different for their complexes with either ATPγS or ADP, whereas this location did not change upon additional interaction of these complexes with ssDNA. Homogeneous (that is, independent of EX wavelength) and nonhomogeneous (dependent on EX wavelength) types of Tyr and Trp fluorescence quenching were analyzed for RecA and its complexes with nucleotide cofactors and ssDNA. The former was expected to result from singlet-singlet energy transfer from these residues to adenine of ATPγS or ADP. By analogy, the latter was suggested to proceed through energy transfer from high vibrational levels of the excited state of Trp and Tyr residues to the adenine. In this case, for correct calculation of the overlap integral, Trp and Tyr donor emission spectra were substituted by the spectral function of convolution of emission and excitation spectra that resulted in a significant increase of the overlap integral and gave an explanation of the nonhomogeneous quenching of Trp residues in the C-terminal domain. (C) 2000 Academic Press.

Downloads: 0