On the existence of periodic solutions for a class of nonlinearly forced systems. Arino, O. & Chérif, A. A. Funkcial. Ekvac., 35(3):485–503, 1992.
abstract   bibtex   
This paper is concerned with the existence of $2 \pi$- periodic solutions of the perturbed Hamiltonian system $\dot x\sb 1=-p\sb 2'(x\sb 2)+ɛg(t)$, $\dot x\sb 2= p\sb 1'(x\sb 1)+ɛh(t)$, where $g(t)$ and $h(t)$ are $2 \pi$-periodic functions. It is assumed that $p\sb 1(x\sb 1)$ and $p\sb 2(x\sb 2)$ behave as polynomials as $x\sb 1$, $x\sb 2 \to 0$ and $x\sb 1$, $x\sb 2 \to \infty$. The proof uses the implicit function theorem.
@Article{ArinoCherif1992,
  author     = {Arino, Ovide and Ch{\'e}rif, A. A.},
  title      = {On the existence of periodic solutions for a class of nonlinearly forced systems},
  journal    = {Funkcial. Ekvac.},
  year       = {1992},
  volume     = {35},
  number     = {3},
  pages      = {485--503},
  issn       = {0532-8721},
  abstract   = {This paper is concerned with the existence of $2
                  \pi$- periodic solutions of the perturbed
                  Hamiltonian system $\dot x\sb 1=-p\sb 2'(x\sb
                  2)+\varepsilon g(t)$, $\dot x\sb 2= p\sb 1'(x\sb
                  1)+\varepsilon h(t)$, where $g(t)$ and $h(t)$ are $2
                  \pi$-periodic functions. It is assumed that $p\sb
                  1(x\sb 1)$ and $p\sb 2(x\sb 2)$ behave as
                  polynomials as $x\sb 1$, $x\sb 2 \to 0$ and $x\sb
                  1$, $x\sb 2 \to \infty$. The proof uses the implicit
                  function theorem.},
  classmath  = {*34C25 },
  coden      = {FESIAT},
  fjournal   = {Fako de l'Funkcialaj Ekvacioj Japana Matematika Societo. Funkcialaj Ekvacioj. Serio Internacia},
  keywords   = {periodic solutions; perturbed Hamiltonian system},
  mrclass    = {34C25 (34C23)},
  mrnumber   = {93k:34089},
  mrreviewer = {Raul F. Manasevich},
  reviewer   = {P.Smith (Keele)},
}

Downloads: 0