Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Arvindekar, S., Jackman, M., Low, J., Landsberg, M., Mackay, J., & Viswanath, S. Protein Science, 2022.
doi  abstract   bibtex   
The nucleosome remodeling and deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information describing the complete NuRD complex is available and a detailed understanding of its mechanism is therefore lacking. Drawing on information from SEC-MALLS, DIA-MS, XLMS, negative-stain EM, X-ray crystallography, NMR spectroscopy, secondary structure predictions, and homology models, we applied Bayesian integrative structure determination to investigate the molecular architecture of three NuRD sub-complexes: MTA1-HDAC1-RBBP4, MTA1N-HDAC1-MBD3GATAD2CC, and MTA1-HDAC1-RBBP4-MBD3-GATAD2A [nucleosome deacetylase (NuDe)]. The integrative structures were corroborated by examining independent crosslinks, cryo-EM maps, biochemical assays, known cancer-associated mutations, and structure predictions from AlphaFold. The robustness of the models was assessed by jack-knifing. Localization of the full-length MBD3, which connects the deacetylase and chromatin remodeling modules in NuRD, has not previously been possible; our models indicate two different locations for MBD3, suggesting a mechanism by which MBD3 in the presence of GATAD2A asymmetrically bridges the two modules in NuRD. Further, our models uncovered three previously unrecognized subunit interfaces in NuDe: HDAC1C-MTA1BAH, MTA1BAH-MBD3MBD, and HDAC160–100-MBD3MBD. Our approach also allowed us to localize regions of unknown structure, such as HDAC1C and MBD3IDR, thereby resulting in the most complete and robustly cross-validated structural characterization of these NuRD sub-complexes so far.
@article{
 title = {Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination},
 type = {article},
 year = {2022},
 volume = {31},
 id = {eef4f63c-8daa-3623-b17b-a5cf28db9aee},
 created = {2023-01-10T01:43:45.810Z},
 file_attached = {false},
 profile_id = {a5a2ab6f-a8b5-3db6-97bc-618752ee4386},
 group_id = {bc1ab1d4-9e57-37e6-9fb5-435fca0ee9d2},
 last_modified = {2023-01-10T01:43:45.810Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {false},
 hidden = {false},
 private_publication = {false},
 abstract = {The nucleosome remodeling and deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information describing the complete NuRD complex is available and a detailed understanding of its mechanism is therefore lacking. Drawing on information from SEC-MALLS, DIA-MS, XLMS, negative-stain EM, X-ray crystallography, NMR spectroscopy, secondary structure predictions, and homology models, we applied Bayesian integrative structure determination to investigate the molecular architecture of three NuRD sub-complexes: MTA1-HDAC1-RBBP4, MTA1N-HDAC1-MBD3GATAD2CC, and MTA1-HDAC1-RBBP4-MBD3-GATAD2A [nucleosome deacetylase (NuDe)]. The integrative structures were corroborated by examining independent crosslinks, cryo-EM maps, biochemical assays, known cancer-associated mutations, and structure predictions from AlphaFold. The robustness of the models was assessed by jack-knifing. Localization of the full-length MBD3, which connects the deacetylase and chromatin remodeling modules in NuRD, has not previously been possible; our models indicate two different locations for MBD3, suggesting a mechanism by which MBD3 in the presence of GATAD2A asymmetrically bridges the two modules in NuRD. Further, our models uncovered three previously unrecognized subunit interfaces in NuDe: HDAC1C-MTA1BAH, MTA1BAH-MBD3MBD, and HDAC160–100-MBD3MBD. Our approach also allowed us to localize regions of unknown structure, such as HDAC1C and MBD3IDR, thereby resulting in the most complete and robustly cross-validated structural characterization of these NuRD sub-complexes so far.},
 bibtype = {article},
 author = {Arvindekar, S. and Jackman, M.J. and Low, J.K.K. and Landsberg, M.J. and Mackay, J.P. and Viswanath, S.},
 doi = {10.1002/pro.4387},
 journal = {Protein Science},
 number = {9}
}

Downloads: 0