The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas. Athanasopoulou, E., Tombrou, M., Pandis, S., N., & Russell, A., G. ATMOSPHERIC CHEMISTRY AND PHYSICS, 8(19):5755-5769, 2008.
abstract   bibtex   
Open-ocean and surf-zone sea-salt aerosol (SSA) emission parameterizations are incorporated in the CAMx aerosol model and applied over an area with an extended Archipelago (Greece), with a fine grid nested over the highly populated Attica peninsula. The maximum indirect impact of SSA on PM10 mass (35%) is located over a marine area with moderate SSA production and elevated shipping emissions (central Aegean Sea) where SSA interacts with anthropogenic nitric acid forming sodium nitrate. SSA increases PM10 levels in the Athens city center up to 25% during stable onshore winds. Under such conditions both open-ocean and surf-zone mechanisms contribute to aerosol production over Attica. A hybrid scheme for gas-to-particle mass transfer is necessary for accurately simulating semi-volatile aerosol components when coarse SSA is included. Dynamically simulating mass transfer to the coarse particles leads to a quadrupling of predicted PM10 nitrate in the Athens city center and up to two orders of magnitude in its coarse mass in comparison to using a bulk equilibrium approach.
@article{
 title = {The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas},
 type = {article},
 year = {2008},
 identifiers = {[object Object]},
 pages = {5755-5769},
 volume = {8},
 id = {00ee0be4-11c6-3fc6-8355-54572f323ded},
 created = {2014-10-08T16:28:18.000Z},
 file_attached = {false},
 profile_id = {363623ef-1990-38f1-b354-f5cdaa6548b2},
 group_id = {02267cec-5558-3876-9cfc-78d056bad5b9},
 last_modified = {2017-03-14T17:32:24.802Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {true},
 hidden = {false},
 citation_key = {Athanasopoulou.acp.2008a},
 source_type = {article},
 private_publication = {false},
 abstract = {Open-ocean and surf-zone sea-salt aerosol (SSA) emission
parameterizations are incorporated in the CAMx aerosol model and
applied over an area with an extended Archipelago (Greece), with a fine
grid nested over the highly populated Attica peninsula. The maximum
indirect impact of SSA on PM10 mass (35%) is located over a marine
area with moderate SSA production and elevated shipping emissions
(central Aegean Sea) where SSA interacts with anthropogenic nitric acid
forming sodium nitrate. SSA increases PM10 levels in the Athens city
center up to 25% during stable onshore winds. Under such conditions
both open-ocean and surf-zone mechanisms contribute to aerosol
production over Attica. A hybrid scheme for gas-to-particle mass
transfer is necessary for accurately simulating semi-volatile aerosol
components when coarse SSA is included. Dynamically simulating mass
transfer to the coarse particles leads to a quadrupling of predicted
PM10 nitrate in the Athens city center and up to two orders of
magnitude in its coarse mass in comparison to using a bulk equilibrium
approach.},
 bibtype = {article},
 author = {Athanasopoulou, E and Tombrou, M and Pandis, S N and Russell, A G},
 journal = {ATMOSPHERIC CHEMISTRY AND PHYSICS},
 number = {19}
}

Downloads: 0