Automated Polysomnography Analysis for Detection of Non-Apneic and Non-Hypopneic Arousals Using Feature Engineering and a Bidirectional LSTM Network. Bahrami Rad, A., Zabihi, M., Zhao, Z., Gabbouj, M., Katsaggelos, A., K., & Särkkä, S. arXiv e-prints, 2019.
bibtex   
@article{
 title = {Automated Polysomnography Analysis for Detection of Non-Apneic and Non-Hypopneic Arousals Using Feature Engineering and a Bidirectional LSTM Network},
 type = {article},
 year = {2019},
 pages = {arXiv--1909},
 id = {e9233db9-a02e-329c-80f0-b0eb96a998e1},
 created = {2023-02-26T01:14:53.574Z},
 file_attached = {false},
 profile_id = {5f6ed621-5f14-3d88-8517-f63e186d1afc},
 group_id = {09c00d87-e816-323b-b005-1b73877c8545},
 last_modified = {2023-02-26T01:14:53.574Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {true},
 hidden = {false},
 citation_key = {bahrami2019automated},
 source_type = {article},
 private_publication = {false},
 bibtype = {article},
 author = {Bahrami Rad, Ali and Zabihi, Morteza and Zhao, Zheng and Gabbouj, Moncef and Katsaggelos, Aggelos K and Särkkä, Simo},
 journal = {arXiv e-prints}
}

Downloads: 0