A Comparison of Evolutionary Computing Techniques Used to Model Bi-Directional Reflectance Distribution Functions. Banks, E. R., Nunez, E., Agarwal, P., McBride, M., Liedel, R., & Owens, C. In *Late breaking paper at Genetic and Evolutionary Computation Conference (GECCO'2006)*, Seattle, WA, USA, 8-12 July, 2006.

Paper abstract bibtex

Paper abstract bibtex

Bi-Directional Reflectance Distribution Functions are used in many fields including computer animation modelling, military defence (radar, lidar, etc.), and others. This paper explores a variety of approaches to modelling BRDFs using different evolutionary computing (EC) techniques. We concentrate on genetic programming (GP) and in hybrid GP approaches, obtaining very close correspondence between models and data. The problem of obtaining parameters that make particular BRDF models fit to laboratory-measured reflectance data is a classic symbolic regression problem. The goal of this approach is to discover the equations that model laboratory-measured data according to several criteria of fitness. These criteria involve closeness of fit, simplicity or complexity of the model (parsimony), form of the result, and speed of discovery. As expected, free form, unconstrained GP gave the best results in terms of minimising measurement errors. However, it also yielded the most complex model forms. Certain constrained approaches proved to be far superior in terms of speed of discovery. Furthermore, application of mild parsimony pressure resulted in not only simpler expressions, but also improved results by yielding small differences between the models and the corresponding laboratory measurements.

@inproceedings{Banks:gecco06lbp, abstract = {Bi-Directional Reflectance Distribution Functions are used in many fields including computer animation modelling, military defence (radar, lidar, etc.), and others. This paper explores a variety of approaches to modelling BRDFs using different evolutionary computing (EC) techniques. We concentrate on genetic programming (GP) and in hybrid GP approaches, obtaining very close correspondence between models and data. The problem of obtaining parameters that make particular BRDF models fit to laboratory-measured reflectance data is a classic symbolic regression problem. The goal of this approach is to discover the equations that model laboratory-measured data according to several criteria of fitness. These criteria involve closeness of fit, simplicity or complexity of the model (parsimony), form of the result, and speed of discovery. As expected, free form, unconstrained GP gave the best results in terms of minimising measurement errors. However, it also yielded the most complex model forms. Certain constrained approaches proved to be far superior in terms of speed of discovery. Furthermore, application of mild parsimony pressure resulted in not only simpler expressions, but also improved results by yielding small differences between the models and the corresponding laboratory measurements.}, added-at = {2008-06-19T17:35:00.000+0200}, address = {Seattle, WA, USA}, author = {Banks, Edwin Roger and Nunez, Edwin and Agarwal, Paul and McBride, Marshall and Liedel, Ronald and Owens, Claudette}, biburl = {https://www.bibsonomy.org/bibtex/2ea0f1b7593ff36305acd4e5cae764817/brazovayeye}, booktitle = {Late breaking paper at Genetic and Evolutionary Computation Conference {(GECCO'2006)}}, editor = {Grahl, J{\"{o}}rn}, interhash = {296634c9cfd2bdab8e5cd5f7e6670365}, intrahash = {ea0f1b7593ff36305acd4e5cae764817}, keywords = {genetic algorithms, programming}, month = {8-12 July}, notes = {Distributed on CD-ROM at GECCO-2006}, timestamp = {2008-06-19T17:36:11.000+0200}, title = {A Comparison of Evolutionary Computing Techniques Used to Model Bi-Directional Reflectance Distribution Functions}, url = {http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006etc/papers/lbp128.pdf}, year = 2006 }

Downloads: 0

{"_id":"LXzj3L4Ysm3L6F9xo","bibbaseid":"banks-nunez-agarwal-mcbride-liedel-owens-acomparisonofevolutionarycomputingtechniquesusedtomodelbidirectionalreflectancedistributionfunctions-2006","authorIDs":[],"author_short":["Banks, E. R.","Nunez, E.","Agarwal, P.","McBride, M.","Liedel, R.","Owens, C."],"bibdata":{"bibtype":"inproceedings","type":"inproceedings","abstract":"Bi-Directional Reflectance Distribution Functions are used in many fields including computer animation modelling, military defence (radar, lidar, etc.), and others. This paper explores a variety of approaches to modelling BRDFs using different evolutionary computing (EC) techniques. We concentrate on genetic programming (GP) and in hybrid GP approaches, obtaining very close correspondence between models and data. The problem of obtaining parameters that make particular BRDF models fit to laboratory-measured reflectance data is a classic symbolic regression problem. The goal of this approach is to discover the equations that model laboratory-measured data according to several criteria of fitness. These criteria involve closeness of fit, simplicity or complexity of the model (parsimony), form of the result, and speed of discovery. As expected, free form, unconstrained GP gave the best results in terms of minimising measurement errors. However, it also yielded the most complex model forms. Certain constrained approaches proved to be far superior in terms of speed of discovery. Furthermore, application of mild parsimony pressure resulted in not only simpler expressions, but also improved results by yielding small differences between the models and the corresponding laboratory measurements.","added-at":"2008-06-19T17:35:00.000+0200","address":"Seattle, WA, USA","author":[{"propositions":[],"lastnames":["Banks"],"firstnames":["Edwin","Roger"],"suffixes":[]},{"propositions":[],"lastnames":["Nunez"],"firstnames":["Edwin"],"suffixes":[]},{"propositions":[],"lastnames":["Agarwal"],"firstnames":["Paul"],"suffixes":[]},{"propositions":[],"lastnames":["McBride"],"firstnames":["Marshall"],"suffixes":[]},{"propositions":[],"lastnames":["Liedel"],"firstnames":["Ronald"],"suffixes":[]},{"propositions":[],"lastnames":["Owens"],"firstnames":["Claudette"],"suffixes":[]}],"biburl":"https://www.bibsonomy.org/bibtex/2ea0f1b7593ff36305acd4e5cae764817/brazovayeye","booktitle":"Late breaking paper at Genetic and Evolutionary Computation Conference (GECCO'2006)","editor":[{"propositions":[],"lastnames":["Grahl"],"firstnames":["Jörn"],"suffixes":[]}],"interhash":"296634c9cfd2bdab8e5cd5f7e6670365","intrahash":"ea0f1b7593ff36305acd4e5cae764817","keywords":"genetic algorithms, programming","month":"8-12 July","notes":"Distributed on CD-ROM at GECCO-2006","timestamp":"2008-06-19T17:36:11.000+0200","title":"A Comparison of Evolutionary Computing Techniques Used to Model Bi-Directional Reflectance Distribution Functions","url":"http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006etc/papers/lbp128.pdf","year":"2006","bibtex":"@inproceedings{Banks:gecco06lbp,\n abstract = {Bi-Directional Reflectance Distribution Functions are\n used in many fields including computer animation\n modelling, military defence (radar, lidar, etc.), and\n others. This paper explores a variety of approaches to\n modelling BRDFs using different evolutionary computing\n (EC) techniques. We concentrate on genetic programming\n (GP) and in hybrid GP approaches, obtaining very close\n correspondence between models and data. The problem of\n obtaining parameters that make particular BRDF models\n fit to laboratory-measured reflectance data is a\n classic symbolic regression problem. The goal of this\n approach is to discover the equations that model\n laboratory-measured data according to several criteria\n of fitness. These criteria involve closeness of fit,\n simplicity or complexity of the model (parsimony), form\n of the result, and speed of discovery. As expected,\n free form, unconstrained GP gave the best results in\n terms of minimising measurement errors. However, it\n also yielded the most complex model forms. Certain\n constrained approaches proved to be far superior in\n terms of speed of discovery. Furthermore, application\n of mild parsimony pressure resulted in not only simpler\n expressions, but also improved results by yielding\n small differences between the models and the\n corresponding laboratory measurements.},\n added-at = {2008-06-19T17:35:00.000+0200},\n address = {Seattle, WA, USA},\n author = {Banks, Edwin Roger and Nunez, Edwin and Agarwal, Paul and McBride, Marshall and Liedel, Ronald and Owens, Claudette},\n biburl = {https://www.bibsonomy.org/bibtex/2ea0f1b7593ff36305acd4e5cae764817/brazovayeye},\n booktitle = {Late breaking paper at Genetic and Evolutionary\n Computation Conference {(GECCO'2006)}},\n editor = {Grahl, J{\\\"{o}}rn},\n interhash = {296634c9cfd2bdab8e5cd5f7e6670365},\n intrahash = {ea0f1b7593ff36305acd4e5cae764817},\n keywords = {genetic algorithms, programming},\n month = {8-12 July},\n notes = {Distributed on CD-ROM at GECCO-2006},\n timestamp = {2008-06-19T17:36:11.000+0200},\n title = {A Comparison of Evolutionary Computing Techniques Used\n to Model Bi-Directional Reflectance Distribution\n Functions},\n url = {http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006etc/papers/lbp128.pdf},\n year = 2006\n}\n\n","author_short":["Banks, E. R.","Nunez, E.","Agarwal, P.","McBride, M.","Liedel, R.","Owens, C."],"editor_short":["Grahl, J."],"key":"Banks:gecco06lbp","id":"Banks:gecco06lbp","bibbaseid":"banks-nunez-agarwal-mcbride-liedel-owens-acomparisonofevolutionarycomputingtechniquesusedtomodelbidirectionalreflectancedistributionfunctions-2006","role":"author","urls":{"Paper":"http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006etc/papers/lbp128.pdf"},"keyword":["genetic algorithms","programming"],"downloads":0},"bibtype":"inproceedings","biburl":"http://www.bibsonomy.org/bib/author/banks?items=1000","creationDate":"2020-11-09T04:30:05.624Z","downloads":0,"keywords":["genetic algorithms","programming"],"search_terms":["comparison","evolutionary","computing","techniques","used","model","directional","reflectance","distribution","functions","banks","nunez","agarwal","mcbride","liedel","owens"],"title":"A Comparison of Evolutionary Computing Techniques Used to Model Bi-Directional Reflectance Distribution Functions","year":2006,"dataSources":["4mnhe87Gt4h7SC73t"]}