Learning in Spiking Neural Assemblies. Barber, D.
abstract   bibtex   
We consider a statistical framework for learning in a class of networks of spiking neurons. Our aim is to show how optimal local learning rules can be readily derived once the neural dynamics and desired functionality of the neural assembly have been specified, in contrast to other models which assume (sub-optimal) learning rules. Within this framework we derive local rules for learning temporal sequences in a model of spiking neurons and demonstrate its superior performance to correlation (Hebbian) based approaches. We further show how to include mechanisms such as synaptic depression and outline how the framework is readily extensible to learning in networks of highly complex spiking neurons. A stochastic quantal vesicle release mechanism is considered and implications on the complexity of learning discussed.
@article{barber_learning_nodate,
	title = {Learning in {Spiking} {Neural} {Assemblies}},
	abstract = {We consider a statistical framework for learning in a class of networks of spiking neurons. Our aim is to show how optimal local learning rules can be readily derived once the neural dynamics and desired functionality of the neural assembly have been specified, in contrast to other models which assume (sub-optimal) learning rules. Within this framework we derive local rules for learning temporal sequences in a model of spiking neurons and demonstrate its superior performance to correlation (Hebbian) based approaches. We further show how to include mechanisms such as synaptic depression and outline how the framework is readily extensible to learning in networks of highly complex spiking neurons. A stochastic quantal vesicle release mechanism is considered and implications on the complexity of learning discussed.},
	language = {en},
	author = {Barber, David},
	pages = {8}
}

Downloads: 0