Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Barrow, M., Peru, K., Fahlman, B., Hewitt, L., Frank, R., & Headley, J. Journal of the American Society for Mass Spectrometry, 26(9):1508-1521, Springer New York LLC, 2015. cited By 22
Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry [link]Paper  doi  abstract   bibtex   
There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands. [Figure not available: see fulltext.] © 2015 American Society for Mass Spectrometry.
@ARTICLE{Barrow20151508,
author={Barrow, M.P. and Peru, K.M. and Fahlman, B. and Hewitt, L.M. and Frank, R.A. and Headley, J.V.},
title={Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry},
journal={Journal of the American Society for Mass Spectrometry},
year={2015},
volume={26},
number={9},
pages={1508-1521},
doi={10.1007/s13361-015-1188-9},
note={cited By 22},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938764911&doi=10.1007%2fs13361-015-1188-9&partnerID=40&md5=56192bcd15f605a5bb22506b1f7f0b50},
affiliation={Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom; Water Science and Technology Division, Environment Canada, Saskatoon, SK  S7N3H5, Canada; Environment and Carbon Management Division, Alberta Innovates-Technology Futures, Vegreville, AB  T9C 1T4, Canada; Water Science and Technology Division, Environment Canada, Burlington, ON  L7R 4A6, Canada},
abstract={There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands. [Figure not available: see fulltext.] © 2015 American Society for Mass Spectrometry.},
author_keywords={Atmospheric pressure photoionization;  Environmental;  Fourier transform ion cyclotron resonance;  Naphthenic acids;  Oil sands;  Water},
keywords={Atmospheric ionization;  Atmospheric pressure;  Cyclotron resonance;  Cyclotrons;  Drug products;  Electron cyclotron resonance;  Fourier series;  Fourier transforms;  Groundwater;  Ionization;  Ionization of gases;  Ionization of liquids;  Ionization potential;  Ions;  Mass spectrometry;  Negative ions;  Oil fields;  Oil sands;  Organic acids;  Photoionization;  Positive ions;  Resonance;  Sand;  Spectrometry;  Water, Atmospheric pressure photo ionization;  Environmental;  Fourier transform ion cyclotron resonance;  Fourier transform ion cyclotron resonance mass spectrometry;  Ion electrospray ionization;  Naphthenic acid;  Oil sands process waters;  Sulfur containing compound, Electrospray ionization, asphalt;  ground water;  naphthenic acid;  organic compound;  river water;  unclassified drug;  water, Article;  athabasca oil sand;  atmospheric pressure;  Canada;  drug mixture;  electrospray;  environmental factor;  Fourier transformation;  ion cyclotron resonance mass spectrometry;  molecular weight;  optical resolution;  principal component analysis;  screening test;  surface mining;  tar sand},
chemicals_cas={asphalt, 8052-42-4; water, 7732-18-5},
references={Barrow, M.P., Petroleomics: Study of the old and the new (2010) Biofuels, 1, pp. 651-655. , 1:CAS:528:DC%2BC3cXhtFOqsrvJ; Headley, J.V., Peru, K.M., Mohamed, M.H., Frank, R.A., Martin, J.W., Hazewinkel, R.R., Humphries, D., Wrona, F.J., Chemical fingerprinting of naphthenic acids and oil sands process waters - A review of analytical methods for environmental samples (2013) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 48, pp. 1145-1163. , 1:CAS:528:DC%2BC3sXntFagtLw%3D; Schindler, D.W., Unravelling the complexity of pollution by the oil sands industry (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 3209-3210. , 1:CAS:528:DC%2BC2cXjsVCmtr8%3D; Schindler, D., Tar sands need solid science (2010) Nature, 468, pp. 499-501. , 1:CAS:528:DC%2BC3cXhsVOrsb%2FK; Grewer, D.M., Young, R.F., Whittal, R.M., Fedorak, P.M., Naphthenic acids and other acid-extractables in water samples from Alberta: What is being measured? (2010) Sci. Total Environ., 408, pp. 5997-6010. , 1:CAS:528:DC%2BC3cXhtlaqtr3L; Holowenko, F.M., MacKinnon, M.D., Fedorak, P.M., Naphthenic acids and surrogate naphthenic acids in methanogenic microcosms (2001) Water Res., 35, pp. 2595-2606. , 1:CAS:528:DC%2BD3MXktVGmtLc%3D; Headley, J.V., Peru, K.M., McMartin, D.W., Winkler, M., Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospray mass spectrometry (2002) J. AOAC Int., 85, pp. 182-187. , 1:CAS:528:DC%2BD38XhsVKiu78%3D; Rogers, V.V., Liber, K., MacKinnon, M.D., Isolation and characterization of naphthenic acids from Athabasca oil sands tailings pond water (2002) Chemosphere, 48, pp. 519-527. , 1:CAS:528:DC%2BD38XktFOmtbs%3D; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Fourier transform ion cyclotron resonance mass spectrometry of principal components in oilsands naphthenic acids (2004) J. Chromatogr. A, 1058, pp. 51-59. , 1:CAS:528:DC%2BD2cXpslGiu7Y%3D; Bataineh, M., Scott, A.C., Fedorak, P.M., Martin, J.W., Capillary HPLC/QTOF-MS for characterizing complex naphthenic acid mixtures and their microbial transformation (2006) Anal. Chem., 78, pp. 8354-8361. , 1:CAS:528:DC%2BD28Xht1Whs7jM; Lo, C.C., Brownlee, B.G., Bunce, N.J., Mass spectrometric and toxicological assays of Athabasca oil sands naphthenic acids (2006) Water Res., 40, pp. 655-664. , 1:CAS:528:DC%2BD28XhsFCrsLo%3D; Headley, J.V., Peru, K.M., Barrow, M.P., Derrick, P.J., Characterization of naphthenic acids from athabasca oil sands using electrospray ionization: The significant influence of solvents (2007) Anal. Chem., 79, pp. 6222-6229. , 1:CAS:528:DC%2BD2sXntFegsbs%3D; Barrow, M.P., Headley, J.V., Peru, K.M., Derrick, P.J., Data visualization for the characterization of naphthenic acids within petroleum samples (2009) Energy Fuel, 23, pp. 2592-2599. , 1:CAS:528:DC%2BD1MXjslGqtbg%3D; Headley, J.V., Peru, K.M., Barrow, M.P., Mass spectrometric characterization of naphthenic acids in environmental samples: A review (2009) Mass Spectrom. Rev., 28, pp. 121-134. , 1:CAS:528:DC%2BD1MXhsFGlur8%3D; Barrow, M.P., Witt, M., Headley, J.V., Peru, K.M., Athabasca oil sands process water: Characterization by atmospheric pressure photoionization and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2010) Anal. Chem., 82, pp. 3727-3735. , 1:CAS:528:DC%2BC3cXktVyisLk%3D; Headley, J.V., Barrow, M.P., Peru, K.M., Derrick, P.J., Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization (2011) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 46, pp. 844-854. , 1:CAS:528:DC%2BC3MXnslKntr4%3D; Headley, J.V., Barrow, M.P., Peru, K.M., Fahlman, B., Frank, R.A., Bickerton, G., McMaster, M.E., Hewitt, L.M., Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2011) Rapid Commun. Mass Spectrom., 25, pp. 1899-1909. , 1:CAS:528:DC%2BC3MXntVGmtrY%3D; Rowland, S.J., West, C.E., Jones, D., Scarlett, A.G., Frank, R.A., Hewitt, L.M., Steroidal aromatic 'naphthenic acids' in oil sands process-affected water: Structural comparisons with environmental estrogens (2011) Environ. Sci. Technol., 45, pp. 9806-9815. , 1:CAS:528:DC%2BC3MXhtlCiurbP; Quagraine, E.K., Peterson, H.G., Headley, J.V., In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region - Demonstrated field studies and plausible options: A review (2005) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 40, pp. 685-722. , 1:CAS:528:DC%2BD2MXitVSrsrs%3D; Headley, J.V., Du, J.L., Peru, K.M., McMartin, D.W., Electrospray ionization mass spectrometry of the photodegradation of naphthenic acids mixtures irradiated with titanium dioxide (2009) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 44, pp. 591-597. , 1:CAS:528:DC%2BD1MXjvVynsbk%3D; Martin, J.W., Barri, T., Han, X., Fedorak, P.M., El-Din, M.G., Perez, L., Scott, A.C., Jiang, J.T., Ozonation of oil sands process-affected water accelerates microbial bioremediation (2010) Environ. Sci. Technol., 44, pp. 8350-8356. , 1:CAS:528:DC%2BC3cXht1Gqt77J; Marshall, A.G., Rodgers, R.P., Petroleomics: The next grand challenge for chemical analysis (2004) Acc. Chem. Res., 37, pp. 53-59. , 1:CAS:528:DC%2BD3sXpsFaqs7Y%3D; Marshall, A.G., Rodgers, R.P., Petroleomics: Chemistry of the underworld (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 18090-18095. , 1:CAS:528:DC%2BD1cXhsVOmsLfF; Amster, I.J., Fourier transform mass spectrometry (1996) J. Mass Spectrom., 31, pp. 1325-1337. , 1:CAS:528:DyaK2sXis12htQ%3D%3D; Marshall, A.G., Hendrickson, C.L., Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry: A primer (1998) Mass Spectrom. Rev., 17, pp. 1-35. , 1:CAS:528:DyaK1cXmsFantbk%3D; Barrow, M.P., Burkitt, W.I., Derrick, P.J., Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology (2005) Analyst, 130, pp. 18-28. , 1:CAS:528:DC%2BD2cXhtFans7%2FF; Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G., Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry (2001) Energy Fuel, 15, pp. 1505-1511. , 1:CAS:528:DC%2BD3MXmtF2ltrg%3D; Barrow, M.P., McDonnell, L.A., Feng, X., Walker, J., Derrick, P.J., Determination of the nature of naphthenic acids present in crude oils using nanospray Fourier transform ion cyclotron resonance mass spectrometry: The continued battle against corrosion (2003) Anal. Chem., 75, pp. 860-866. , 1:CAS:528:DC%2BD3sXltlOjsg%3D%3D; Qian, K., Rodgers, R.P., Hendrickson, C.L., Emmett, M.R., Marshall, A.G., Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil (2001) Energy Fuel, 15, pp. 492-498. , 1:CAS:528:DC%2BD3MXht12lsw%3D%3D; Schaub, T.M., Hendrickson, C.L., Qian, K., Quinn, J.P., Marshall, A.G., High-resolution field desorption/ionization Fourier transform ion cyclotron resonance mass analysis of nonpolar molecules (2003) Anal. Chem., 75, pp. 2172-2176. , 1:CAS:528:DC%2BD3sXisVOrur4%3D; Rudzinski, W.E., Aminabhavi, T.M., Sassman, S., Watkins, L.M., Isolation and characterization of the saturate and aromatic fractions of a Maya crude oil (2000) Energy Fuel, 14, pp. 839-844. , 1:CAS:528:DC%2BD3cXktVagsr0%3D; Purcell, J.M., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis (2006) Anal. Chem., 78, pp. 5906-5912. , 1:CAS:528:DC%2BD28XmsVyqtrk%3D; Griffiths, M.T., Da Campo, R., O'Connor, P.B., Barrow, M.P., Throwing light on petroleum: Simulated exposure of crude oil to sunlight and characterization using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (2014) Anal. Chem., 86, pp. 527-534. , 1:CAS:528:DC%2BC3sXhvFejtLbE; Schrader, W., Panda, S., Brockmann, K.J., Benter, T., Characterization of nonpolar aromatic hydrocarbons in crude oil using atmospheric pressure laser ionization and Fourier transform ion cyclotron resonance mass spectrometry (APLI FT-ICR MS) (2008) Analyst, 133, pp. 867-869. , 1:CAS:528:DC%2BD1cXns1artrw%3D; Headley, J.V., Peru, K.M., Armstrong, S.A., Han, X.M., Martin, J.W., Mapolelo, M.M., Smith, D.F., Marshall, A.G., Aquatic plant-derived changes in oil sands naphthenic acid signatures determined by low-, high-, and ultra-high resolution mass spectrometry (2009) Rapid Commun. Mass Spectrom., 23, pp. 515-522. , 1:CAS:528:DC%2BD1MXitVakt7g%3D; Ross, M.S., Pereira, A.D.S., Fennell, J., Davies, M., Johnson, J., Sliva, L., Martin, J.W., Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry (2012) Environ. Sci. Technol., 46, pp. 12796-12805; Frank, R.A., Roy, J.W., Bickerton, G., Rowland, S.J., Headley, J.V., Scarlett, A.G., West, C.E., Hewitt, L.M., Profiling oil sands mixtures from industrial developments and natural ground waters for source identification (2014) Environ. Sci. Technol., 48, pp. 2660-2670. , 1:CAS:528:DC%2BC2cXpsleksw%3D%3D; King, R., Bonfiglio, R., Fernandez-Metzler, C., Miller-Stein, C., Olah, T., Mechanistic investigation of ionization suppression in electrospray ionization (2000) J. Am. Soc. Mass Spectrom., 11, pp. 942-950. , 1:CAS:528:DC%2BD3cXotlCit70%3D; Theron, H.B., Van Der Merwe, M.J., Swart, K.J., Van Der Westhuizen, J.H., Employing atmospheric pressure photoionization in liquid chromatography/tandem mass spectrometry to minimize ion suppression and matrix effects for the quantification of venlafaxine and O-desmethylvenlafaxine (2007) Rapid Commun. Mass Spectrom., 21, pp. 1680-1686. , 1:CAS:528:DC%2BD2sXmt1Olt70%3D; Pearson, K., On lines and planes of closest fit to systems of points in space (1901) Philos. Mag., 2, pp. 559-572; Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K., Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra (2001) Anal. Chem., 73, pp. 4676-4681. , 1:CAS:528:DC%2BD3MXmtlWisbo%3D; Guan, S., Marshall, A.G., Scheppele, S.E., Resolution and chemical formula identification of aromatic hydrocarbons and aromatic compounds containing sulfur, nitrogen, or oxygen in petroleum distillates and refinery streams (1996) Anal. Chem., 68, pp. 46-71. , 1:CAS:528:DyaK2MXpslSrtLg%3D; Witt, M., Fuchser, J., Koch, B.P., Fragmentation studies of fulvic acids using collision induced dissociation Fourier transform ion cyclotron resonance mass spectrometry (2009) Anal. Chem., 81, pp. 2688-2694. , 1:CAS:528:DC%2BD1MXis12hsro%3D; Smith, D.F., Schaub, T.M., Rahimi, P., Teclemariam, A., Rodgers, R.P., Marshall, A.G., Self-association of organic acids in petroleum and Canadian bitumen characterized by low- and high-resolution mass spectrometry (2007) Energy Fuel, 21, pp. 1309-1316. , 1:CAS:528:DC%2BD28XhtlSgsr7P; Da Campo, R., Barrow, M.P., Shepherd, A.G., Salisbury, M., Derrick, P.J., Characterization of naphthenic acid singly charged noncovalent dimers and their dependence on the accumulation time within a hexapole in Fourier transform ion cyclotron resonance mass spectrometry (2009) Energy Fuel, 23, pp. 5544-5549; Purcell, J.M., Rodgers, R.P., Hendrickson, C.L., Marshall, A.G., Speciation of nitrogen containing aromatics by atmospheric pressure photoionization or electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (2007) J. Am. Soc. Mass Spectrom., 18, pp. 1265-1273. , 1:CAS:528:DC%2BD2sXntF2ls7k%3D; (2014) ST98-2014 Alberta's Energy Reserves 2013 and Supply/Demand Outlook 2014-2023, , https://www.aer.ca/data-and-publications/statistical-reports/st98, Alberta Energy Regulator, Calgary, Alberta, Canada Accessed 25 March 2015; Kelly, E.N., Short, J.W., Schindler, D.W., Hodson, P.V., Ma, M., Kwan, A.K., Fortin, B.L., Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 22346-22351. , 1:CAS:528:DC%2BC3cXmtlalsA%3D%3D; Headley, J.V., Akre, C., Conly, F.M., Peru, K.M., Dickson, L.C., Preliminary characterization and source assessment of PAHs in tributary sediments of the Athabasca River, Canada (2001) Environ. Forensic., 2, pp. 335-345. , 1:CAS:528:DC%2BD38XivVOqsLY%3D; Lesage, S., Brown, S., Millar, K., Novakowski, K., Humic acids enhanced removal of aromatic hydrocarbons from contaminated aquifers: Developing a sustainable technology (2001) J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 36, pp. 1515-1533. , 1:STN:280:DC%2BD3MrltVGksA%3D%3D; Van Stempvoort, D.R., Lesage, S., Novakowski, K.S., Millar, K., Brown, S., Lawrence, J.R., Humic acid enhanced remediation of an emplaced diesel source in groundwater: 1. Laboratory-based pilot scale test (2002) J. Contam. Hydrol., 54, pp. 249-276; Bowman, D.T., Slater, G.F., Warren, L.A., McCarry, B.E., Identification of individual thiophene-, indane-, tetralin-, cyclohexane-, and adamantane-type carboxylic acids in composite tailings pore water from Alberta oil sands (2014) Rapid Commun. Mass Spectrom., 28, pp. 2075-2083. , 1:CAS:528:DC%2BC2cXhsVWqsr%2FL; Ahad, J.M., Pakdel, H., Savard, M.M., Calderhead, A.I., Gammon, P.R., Rivera, A., Peru, K.M., Headley, J.V., Characterization and quantification of mining-related "naphthenic acids" in ground water near a major oil sands tailings pond (2013) Environ. Sci. Technol., 47, pp. 5023-5030. , 1:CAS:528:DC%2BC3sXmt1yksL0%3D; Barrow, M.P., Peru, K.M., Headley, J.V., An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands (2014) Anal. Chem., 86, pp. 8281-8288. , 1:CAS:528:DC%2BC2cXhtFOqtbzN},
correspondence_address1={Barrow, M.P.; Department of Chemistry, University of WarwickUnited Kingdom},
publisher={Springer New York LLC},
issn={10440305},
coden={JAMSE},
language={English},
abbrev_source_title={J. Am. Soc. Mass Spectrom.},
document_type={Article},
source={Scopus},
}

Downloads: 0