Ultraviolet irradiation of eggs and blastomere isolation experiments suggest that gastrulation in the direct developing ascidian, Molgula pacifica, requires localized cytoplasmic determinants in the egg and cell signaling beginning at the two-cell stage. Bates, W. R. Evolution & Development, 6(3):180–186, May, 2004.
doi  abstract   bibtex   
Gastrulation in the maximum direct developing ascidian Molgula pacifica is highly modified compared with commonly studied "model" ascidians in that endoderm cells situated in the vegetal pole region do not undergo typical invagination and due to the absence of a typical blastopore the involution of mesoderm cells is highly modified. At the gastrula stage, embryos are comprised of a central cluster of large yolky cells that are surrounded by a single layer of ectoderm cells in which there is only a slight indication of an inward movement of cells at the vegetal pole. As a consequence, these embryos do not form an archenteron. In the present study, ultraviolet (UV) irradiation of fertilized eggs tested the possibility that cortical cytoplasmic factors are required for gastrulation, and blastomere isolation experiments tested the possibility that cell signaling beginning at the two-cell stage may be required for the development of the gastrula. Irradiation of unoriented fertilized eggs with UV light resulted in late cleavage stage embryos that failed to undergo gastrulation. When blastomeres were isolated from two-cell embryos, they developed into late cleavage stage embryos; however, they did not undergo gastrulation and subsequently develop into juveniles. These results suggest that cytoplasmic factors required for gastrulation are localized in the egg cortex, but in contrast to previously studied indirect developers, these factors are not exclusively localized in the vegetal pole region at the first stage of ooplasmic segregation. Furthermore, the inability of embryos derived from blastomeres isolated at the two-cell stage to undergo gastrulation and develop into juveniles suggests that important cell signaling begins as early as the two-cell stage in M. pacifica. These results are discussed in terms of the evolution of maximum direct development in ascidians.
@article{bates_ultraviolet_2004,
	title = {Ultraviolet irradiation of eggs and blastomere isolation experiments suggest that gastrulation in the direct developing ascidian, {Molgula} pacifica, requires localized cytoplasmic determinants in the egg and cell signaling beginning at the two-cell stage},
	volume = {6},
	shorttitle = {Ultraviolet irradiation of eggs and blastomere isolation experiments suggest that gastrulation in the direct developing ascidian, {Molgula} pacifica, requires localized cytoplasmic determinants in the egg and cell signaling beginning at the two-cell stage},
	doi = {10.1111/j.1525-142x.2004.04023.x},
	abstract = {Gastrulation in the maximum direct developing ascidian Molgula pacifica is highly modified compared with commonly studied "model" ascidians in that endoderm cells situated in the vegetal pole region do not undergo typical invagination and due to the absence of a typical blastopore the involution of mesoderm cells is highly modified. At the gastrula stage, embryos are comprised of a central cluster of large yolky cells that are surrounded by a single layer of ectoderm cells in which there is only a slight indication of an inward movement of cells at the vegetal pole. As a consequence, these embryos do not form an archenteron. In the present study, ultraviolet (UV) irradiation of fertilized eggs tested the possibility that cortical cytoplasmic factors are required for gastrulation, and blastomere isolation experiments tested the possibility that cell signaling beginning at the two-cell stage may be required for the development of the gastrula. Irradiation of unoriented fertilized eggs with UV light resulted in late cleavage stage embryos that failed to undergo gastrulation. When blastomeres were isolated from two-cell embryos, they developed into late cleavage stage embryos; however, they did not undergo gastrulation and subsequently develop into juveniles. These results suggest that cytoplasmic factors required for gastrulation are localized in the egg cortex, but in contrast to previously studied indirect developers, these factors are not exclusively localized in the vegetal pole region at the first stage of ooplasmic segregation. Furthermore, the inability of embryos derived from blastomeres isolated at the two-cell stage to undergo gastrulation and develop into juveniles suggests that important cell signaling begins as early as the two-cell stage in M. pacifica. These results are discussed in terms of the evolution of maximum direct development in ascidians.},
	number = {3},
	journal = {Evolution \& Development},
	author = {Bates, W. R.},
	month = may,
	year = {2004},
	keywords = {Molgula pacifica},
	pages = {180--186},
}

Downloads: 0