Bounds on sizes of generalized caps in AG(n, q) via the Croot-Lev-Pach polynomial method. Bennett, M. J. Comb. Theory A, 168:255-271, 2019.
Bounds on sizes of generalized caps in AG(n, q) via the Croot-Lev-Pach polynomial method. [link]Link  Bounds on sizes of generalized caps in AG(n, q) via the Croot-Lev-Pach polynomial method. [link]Paper  bibtex   
@article{journals/jct/Bennett19,
  added-at = {2024-06-07T00:00:00.000+0200},
  author = {Bennett, Michael},
  biburl = {https://www.bibsonomy.org/bibtex/24805e1c22ba0bad10fce9fc87d4a77b8/dblp},
  ee = {https://doi.org/10.1016/j.jcta.2019.06.001},
  interhash = {4f72abe86aa2cc7da7372dc7ddad599c},
  intrahash = {4805e1c22ba0bad10fce9fc87d4a77b8},
  journal = {J. Comb. Theory A},
  keywords = {dblp},
  pages = {255-271},
  timestamp = {2024-06-10T07:06:32.000+0200},
  title = {Bounds on sizes of generalized caps in AG(n, q) via the Croot-Lev-Pach polynomial method.},
  url = {http://dblp.uni-trier.de/db/journals/jct/jcta168.html#Bennett19},
  volume = 168,
  year = 2019
}

Downloads: 0