Early Detection of Students at Risk – Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods. Berens, J.; Schneider, K.; Görtz, S.; Oster, S.; and & Burghoff, J. Journal of Educational Data Mining, 11(3):1–41.
doi  bibtex   
@article{berens_j_schneider_k_gortz_s_oster_s__burghoff_j_early_nodate,
	title = {Early {Detection} of {Students} at {Risk}	– {Predicting} {Student} {Dropouts} {Using} {Administrative} {Student} {Data} and {Machine} {Learning} {Methods}},
	volume = {11},
	doi = {https://doi.org/10.5281/zenodo.3594771},
	number = {3},
	journal = {Journal of Educational Data Mining},
	author = {{Berens, J., Schneider, K., Görtz, S., Oster, S., \& Burghoff, J.}},
	pages = {1--41}
}
Downloads: 0