Wannier states and Bose-Hubbard parameters for 2D optical lattices. Blakie, P. b & Clark, C. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(7):1391-1404, 2004. cited By 40
Paper doi abstract bibtex We consider the physical implementation of a 2D optical lattice with schemes involving three and four light fields. We illustrate the wide range of geometries available to the 3-beam lattice, and compare the general potential properties of the two lattice schemes. Numerically calculating the band structure we obtain the Wannier states and evaluate the parameters of the Bose-Hubbard models relevant to these lattices. Using these results we demonstrate lattices that realize Bose-Hubbard models with 2, 4, or 6 nearest neighbours, and quantify the extent that these different lattices affect the superfluid to Mott-insulator transition.
@ARTICLE{Blakie20041391,
author={Blakie, P.B.a b and Clark, C.W.a },
title={Wannier states and Bose-Hubbard parameters for 2D optical lattices},
journal={Journal of Physics B: Atomic, Molecular and Optical Physics},
year={2004},
volume={37},
number={7},
pages={1391-1404},
doi={10.1088/0953-4075/37/7/002},
note={cited By 40},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342596393&partnerID=40&md5=4c428a481a3645758a6f09923d02419d},
affiliation={Electron/Optical Physics Division, Natl. Inst. of Std. and Technology, Gaithersburg, MD 20899-8410, United States; Department of Physics, University of Otago, PO Box 56, Dunedin, New Zealand},
abstract={We consider the physical implementation of a 2D optical lattice with schemes involving three and four light fields. We illustrate the wide range of geometries available to the 3-beam lattice, and compare the general potential properties of the two lattice schemes. Numerically calculating the band structure we obtain the Wannier states and evaluate the parameters of the Bose-Hubbard models relevant to these lattices. Using these results we demonstrate lattices that realize Bose-Hubbard models with 2, 4, or 6 nearest neighbours, and quantify the extent that these different lattices affect the superfluid to Mott-insulator transition.},
references={Deutsch, I., Jessen, P., (1998) Phys. Rev. A, 57, p. 1972; Calarco, T., Briegel, H., Jaksch, D., Cirac, J.I., Zoller, P., (2000) J. Mod. Opt., 47, p. 2137; Jaksch, D., Zoller, P., (2003) New J. Phys., 5, p. 56; Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C., Zoller, P., (1998) Phys. Rev. Lett., 81, p. 3108; Hofstetter, W., Cirac, J., Zoller, P., Demler, E., Lukin, M., (2002) Phys. Rev. Lett., 89, p. 220407; Orzel, C., Tuchman, A.K., Fenselau, M.L., Yasuda, M., Kasevich, M.A., (2001) Science, 23, p. 2386; Greiner, M., Mandel, O., Esslinger, T., Hänsen, T.W., Bloch, I., (2002) Nature, 415, p. 39; Greiner, M., Mandel, O., Hänsen, T.W., Bloch, I., (2002) Nature, 419, p. 51; Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T., Bloch, I., (2003) Phys. Rev. Lett., p. 91010407; Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S., (1989) Phys. Rev. B, 40, p. 546; Burger, S., Cataliotti, F.S., Fort, C., Maddaloni, P., Minardi, F., Inguscio, M., (2002) Europhys. Lett., 57, p. 1; Laburthe-Tolra B, Porto J V, O'Hara K M, Huckans J H, Rolston S L and Phillips W D 2003 Preprint cond-mat/0312003Moritz, H., Stöferle, T., Köhl, M., Esslinger, T., (2003) Phys. Rev. Lett., 91, p. 250402. , Preprint cond-mat/0307607; Abramowitz, M., Stegun, I., (1964) Handbook of Mathematical Functions, , US Government Printing Office; Greiner, M., Bloch, I., Mandel, O., Hänsch, T.W., Esslinger, T., (2001) Phys. Rev. Lett., 87, pp. N160405; Peil, S., Porto, J.V., Tolra, B.L., Obrecht, J.M., King, B.E., Subbotin, M., Rolston, S.L., Phillips, W.D., (2003) Phys. Rev. A, 67, pp. 051603R; Petsas, K., Coates, A., Grynberg, G., (1994) Phys. Rev. A, 50, p. 5173; Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, , Philadelphia, PA: Saunders; Petsas, K., Triché, C., Guidoni, L., Jurczak, C., Courtois, J.-Y., Grynberg, G., (1999) Europhys. Lett., 46, p. 18; Grimm, R., Weidemüller, M., Ovchinnikov, Y., (2000) Adv. At. Mol. Opt. Phys., 42, p. 95; Guidoni, L., Verker, P., (1999) J. Opt. B: Quantum Semiclass. Opt., 1, pp. R23},
document_type={Conference Paper},
source={Scopus},
}
Downloads: 0
{"_id":"PJfXL6Tc4CgSNmj2X","bibbaseid":"blakie-clark-wannierstatesandbosehubbardparametersfor2dopticallattices-2004","downloads":0,"creationDate":"2016-08-25T00:42:15.824Z","title":"Wannier states and Bose-Hubbard parameters for 2D optical lattices","author_short":["Blakie, P. b","Clark, C."],"year":2004,"bibtype":"article","biburl":"https://dl.dropboxusercontent.com/u/15029660/qtheory.bib","bibdata":{"bibtype":"article","type":"article","author":[{"propositions":[],"lastnames":["Blakie"],"firstnames":["P.B.a","b"],"suffixes":[]},{"propositions":[],"lastnames":["Clark"],"firstnames":["C.W.a"],"suffixes":[]}],"title":"Wannier states and Bose-Hubbard parameters for 2D optical lattices","journal":"Journal of Physics B: Atomic, Molecular and Optical Physics","year":"2004","volume":"37","number":"7","pages":"1391-1404","doi":"10.1088/0953-4075/37/7/002","note":"cited By 40","url":"https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342596393&partnerID=40&md5=4c428a481a3645758a6f09923d02419d","affiliation":"Electron/Optical Physics Division, Natl. Inst. of Std. and Technology, Gaithersburg, MD 20899-8410, United States; Department of Physics, University of Otago, PO Box 56, Dunedin, New Zealand","abstract":"We consider the physical implementation of a 2D optical lattice with schemes involving three and four light fields. We illustrate the wide range of geometries available to the 3-beam lattice, and compare the general potential properties of the two lattice schemes. Numerically calculating the band structure we obtain the Wannier states and evaluate the parameters of the Bose-Hubbard models relevant to these lattices. Using these results we demonstrate lattices that realize Bose-Hubbard models with 2, 4, or 6 nearest neighbours, and quantify the extent that these different lattices affect the superfluid to Mott-insulator transition.","references":"Deutsch, I., Jessen, P., (1998) Phys. Rev. A, 57, p. 1972; Calarco, T., Briegel, H., Jaksch, D., Cirac, J.I., Zoller, P., (2000) J. Mod. Opt., 47, p. 2137; Jaksch, D., Zoller, P., (2003) New J. Phys., 5, p. 56; Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C., Zoller, P., (1998) Phys. Rev. Lett., 81, p. 3108; Hofstetter, W., Cirac, J., Zoller, P., Demler, E., Lukin, M., (2002) Phys. Rev. Lett., 89, p. 220407; Orzel, C., Tuchman, A.K., Fenselau, M.L., Yasuda, M., Kasevich, M.A., (2001) Science, 23, p. 2386; Greiner, M., Mandel, O., Esslinger, T., Hänsen, T.W., Bloch, I., (2002) Nature, 415, p. 39; Greiner, M., Mandel, O., Hänsen, T.W., Bloch, I., (2002) Nature, 419, p. 51; Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T., Bloch, I., (2003) Phys. Rev. Lett., p. 91010407; Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S., (1989) Phys. Rev. B, 40, p. 546; Burger, S., Cataliotti, F.S., Fort, C., Maddaloni, P., Minardi, F., Inguscio, M., (2002) Europhys. Lett., 57, p. 1; Laburthe-Tolra B, Porto J V, O'Hara K M, Huckans J H, Rolston S L and Phillips W D 2003 Preprint cond-mat/0312003Moritz, H., Stöferle, T., Köhl, M., Esslinger, T., (2003) Phys. Rev. Lett., 91, p. 250402. , Preprint cond-mat/0307607; Abramowitz, M., Stegun, I., (1964) Handbook of Mathematical Functions, , US Government Printing Office; Greiner, M., Bloch, I., Mandel, O., Hänsch, T.W., Esslinger, T., (2001) Phys. Rev. Lett., 87, pp. N160405; Peil, S., Porto, J.V., Tolra, B.L., Obrecht, J.M., King, B.E., Subbotin, M., Rolston, S.L., Phillips, W.D., (2003) Phys. Rev. A, 67, pp. 051603R; Petsas, K., Coates, A., Grynberg, G., (1994) Phys. Rev. A, 50, p. 5173; Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, , Philadelphia, PA: Saunders; Petsas, K., Triché, C., Guidoni, L., Jurczak, C., Courtois, J.-Y., Grynberg, G., (1999) Europhys. Lett., 46, p. 18; Grimm, R., Weidemüller, M., Ovchinnikov, Y., (2000) Adv. At. Mol. Opt. Phys., 42, p. 95; Guidoni, L., Verker, P., (1999) J. Opt. B: Quantum Semiclass. Opt., 1, pp. R23","document_type":"Conference Paper","source":"Scopus","bibtex":"@ARTICLE{Blakie20041391,\nauthor={Blakie, P.B.a b and Clark, C.W.a },\ntitle={Wannier states and Bose-Hubbard parameters for 2D optical lattices},\njournal={Journal of Physics B: Atomic, Molecular and Optical Physics},\nyear={2004},\nvolume={37},\nnumber={7},\npages={1391-1404},\ndoi={10.1088/0953-4075/37/7/002},\nnote={cited By 40},\nurl={https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342596393&partnerID=40&md5=4c428a481a3645758a6f09923d02419d},\naffiliation={Electron/Optical Physics Division, Natl. Inst. of Std. and Technology, Gaithersburg, MD 20899-8410, United States; Department of Physics, University of Otago, PO Box 56, Dunedin, New Zealand},\nabstract={We consider the physical implementation of a 2D optical lattice with schemes involving three and four light fields. We illustrate the wide range of geometries available to the 3-beam lattice, and compare the general potential properties of the two lattice schemes. Numerically calculating the band structure we obtain the Wannier states and evaluate the parameters of the Bose-Hubbard models relevant to these lattices. Using these results we demonstrate lattices that realize Bose-Hubbard models with 2, 4, or 6 nearest neighbours, and quantify the extent that these different lattices affect the superfluid to Mott-insulator transition.},\nreferences={Deutsch, I., Jessen, P., (1998) Phys. Rev. A, 57, p. 1972; Calarco, T., Briegel, H., Jaksch, D., Cirac, J.I., Zoller, P., (2000) J. Mod. Opt., 47, p. 2137; Jaksch, D., Zoller, P., (2003) New J. Phys., 5, p. 56; Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C., Zoller, P., (1998) Phys. Rev. Lett., 81, p. 3108; Hofstetter, W., Cirac, J., Zoller, P., Demler, E., Lukin, M., (2002) Phys. Rev. Lett., 89, p. 220407; Orzel, C., Tuchman, A.K., Fenselau, M.L., Yasuda, M., Kasevich, M.A., (2001) Science, 23, p. 2386; Greiner, M., Mandel, O., Esslinger, T., Hänsen, T.W., Bloch, I., (2002) Nature, 415, p. 39; Greiner, M., Mandel, O., Hänsen, T.W., Bloch, I., (2002) Nature, 419, p. 51; Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T., Bloch, I., (2003) Phys. Rev. Lett., p. 91010407; Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S., (1989) Phys. Rev. B, 40, p. 546; Burger, S., Cataliotti, F.S., Fort, C., Maddaloni, P., Minardi, F., Inguscio, M., (2002) Europhys. Lett., 57, p. 1; Laburthe-Tolra B, Porto J V, O'Hara K M, Huckans J H, Rolston S L and Phillips W D 2003 Preprint cond-mat/0312003Moritz, H., Stöferle, T., Köhl, M., Esslinger, T., (2003) Phys. Rev. Lett., 91, p. 250402. , Preprint cond-mat/0307607; Abramowitz, M., Stegun, I., (1964) Handbook of Mathematical Functions, , US Government Printing Office; Greiner, M., Bloch, I., Mandel, O., Hänsch, T.W., Esslinger, T., (2001) Phys. Rev. Lett., 87, pp. N160405; Peil, S., Porto, J.V., Tolra, B.L., Obrecht, J.M., King, B.E., Subbotin, M., Rolston, S.L., Phillips, W.D., (2003) Phys. Rev. A, 67, pp. 051603R; Petsas, K., Coates, A., Grynberg, G., (1994) Phys. Rev. A, 50, p. 5173; Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, , Philadelphia, PA: Saunders; Petsas, K., Triché, C., Guidoni, L., Jurczak, C., Courtois, J.-Y., Grynberg, G., (1999) Europhys. Lett., 46, p. 18; Grimm, R., Weidemüller, M., Ovchinnikov, Y., (2000) Adv. At. Mol. Opt. Phys., 42, p. 95; Guidoni, L., Verker, P., (1999) J. Opt. B: Quantum Semiclass. Opt., 1, pp. R23},\ndocument_type={Conference Paper},\nsource={Scopus},\n}\n\n","author_short":["Blakie, P. b","Clark, C."],"key":"Blakie20041391","id":"Blakie20041391","bibbaseid":"blakie-clark-wannierstatesandbosehubbardparametersfor2dopticallattices-2004","role":"author","urls":{"Paper":"https://www.scopus.com/inward/record.uri?eid=2-s2.0-2342596393&partnerID=40&md5=4c428a481a3645758a6f09923d02419d"},"downloads":0},"search_terms":["wannier","states","bose","hubbard","parameters","optical","lattices","blakie","clark"],"keywords":[],"authorIDs":[],"dataSources":["fq38BGwWPbTq5XnzM"]}