Evidence for the inhibitory neurotransmitter gamma-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of the turtle dorsal cortex. Blanton, M G, Shen, J M, & Kriegstein, A R J Comp Neurol, 259(2):277–297, United States, May, 1987.
abstract   bibtex   
In order to learn more about the anatomical substrate for gamma-aminobutyric acid (GABA)-mediated inhibition in cortical structures, the intrinsic neuronal organization of turtle dorsal cortex was studied by using Golgi impregnation, immunohistochemical localization of GABA and its synthetic enzyme glutamic acid decarboxylase (GAD), and histochemical localization of the presynaptic GABA-degrading enzyme GABA-transaminase (GABA-T). GABAergic markers are found in neurons identical in morphology and distribution to Golgi-impregnated aspiny and sparsely spiny nonpyramidal neurons with locally arborizing axons and appear to label most if not all of the nonpyramidal neurons. In addition, the GABAergic markers are found in punctate structures in a distribution characteristic of presumed inhibitory terminals. The spine-laden pyramidal neurons, the principal projecting cell type in the dorsal cortex, are devoid of labelling for GABAergic markers but are surrounded by presumed GABAergic terminals. The data complement previous physiological and ultrastructural studies that implicate aspiny and sparsely spiny nonpyramidal neurons as mediators of intrinsic inhibition of pyramidal neurons in turtle cortex. The results also suggest similarities in the functional organization of intrinsic inhibitory elements in turtle and mammalian cortex.
@ARTICLE{Blanton1987-oz,
  title    = "Evidence for the inhibitory neurotransmitter gamma-aminobutyric
              acid in aspiny and sparsely spiny nonpyramidal neurons of the
              turtle dorsal cortex",
  author   = "Blanton, M G and Shen, J M and Kriegstein, A R",
  abstract = "In order to learn more about the anatomical substrate for
              gamma-aminobutyric acid (GABA)-mediated inhibition in cortical
              structures, the intrinsic neuronal organization of turtle dorsal
              cortex was studied by using Golgi impregnation,
              immunohistochemical localization of GABA and its synthetic enzyme
              glutamic acid decarboxylase (GAD), and histochemical localization
              of the presynaptic GABA-degrading enzyme GABA-transaminase
              (GABA-T). GABAergic markers are found in neurons identical in
              morphology and distribution to Golgi-impregnated aspiny and
              sparsely spiny nonpyramidal neurons with locally arborizing axons
              and appear to label most if not all of the nonpyramidal neurons.
              In addition, the GABAergic markers are found in punctate
              structures in a distribution characteristic of presumed
              inhibitory terminals. The spine-laden pyramidal neurons, the
              principal projecting cell type in the dorsal cortex, are devoid
              of labelling for GABAergic markers but are surrounded by presumed
              GABAergic terminals. The data complement previous physiological
              and ultrastructural studies that implicate aspiny and sparsely
              spiny nonpyramidal neurons as mediators of intrinsic inhibition
              of pyramidal neurons in turtle cortex. The results also suggest
              similarities in the functional organization of intrinsic
              inhibitory elements in turtle and mammalian cortex.",
  journal  = "J Comp Neurol",
  volume   =  259,
  number   =  2,
  pages    = "277--297",
  month    =  may,
  year     =  1987,
  address  = "United States",
  language = "en"
}

Downloads: 0